BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

Related tags

Text Data & NLPbros
Overview

BROS

Introduction

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which are text and bounding box pairs, it can perform various key information extraction tasks, such as extracting an ordered item list from receipts. For more details, please refer to our paper:

BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park
AAAI 2022 (to appear)

Pre-trained models

name # params Hugging Face - Models
bros-base-uncased < 110M naver-clova-ocr/bros-base-uncased
bros-large-uncased < 340M naver-clova-ocr/bros-large-uncased

Model usage

The example code below is written with reference to LayoutLM.

import torch
from bros import BrosTokenizer, BrosModel


tokenizer = BrosTokenizer.from_pretrained("naver-clova-ocr/bros-base-uncased")
model = BrosModel.from_pretrained("naver-clova-ocr/bros-base-uncased")


width, height = 1280, 720

words = ["to", "the", "moon!"]
quads = [
    [638, 451, 863, 451, 863, 569, 638, 569],
    [877, 453, 1190, 455, 1190, 568, 876, 567],
    [632, 566, 1107, 566, 1107, 691, 632, 691],
]

bbox = []
for word, quad in zip(words, quads):
    n_word_tokens = len(tokenizer.tokenize(word))
    bbox.extend([quad] * n_word_tokens)

cls_quad = [0.0] * 8
sep_quad = [width, height] * 4
bbox = [cls_quad] + bbox + [sep_quad]

encoding = tokenizer(" ".join(words), return_tensors="pt")
input_ids = encoding["input_ids"]
attention_mask = encoding["attention_mask"]

bbox = torch.tensor([bbox])
bbox[:, :, [0, 2, 4, 6]] = bbox[:, :, [0, 2, 4, 6]] / width
bbox[:, :, [1, 3, 5, 7]] = bbox[:, :, [1, 3, 5, 7]] / height

outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
last_hidden_state = outputs.last_hidden_state

print("- last_hidden_state")
print(last_hidden_state)
print()
print("- last_hidden_state.shape")
print(last_hidden_state.shape)

Result

- last_hidden_state
tensor([[[-0.0342,  0.2487, -0.2819,  ...,  0.1495,  0.0218,  0.0484],
         [ 0.0792, -0.0040, -0.0127,  ..., -0.0918,  0.0810,  0.0419],
         [ 0.0808, -0.0918,  0.0199,  ..., -0.0566,  0.0869, -0.1859],
         [ 0.0862,  0.0901,  0.0473,  ..., -0.1328,  0.0300, -0.1613],
         [-0.2925,  0.2539,  0.1348,  ...,  0.1988, -0.0148, -0.0982],
         [-0.4160,  0.2135, -0.0390,  ...,  0.6908, -0.2985,  0.1847]]],
       grad_fn=
   
    )

- last_hidden_state.shape
torch.Size([1, 6, 768])

   

Fine-tuning examples

Please refer to docs/finetuning_examples.md.

Acknowledgements

We referenced the code of LayoutLM when implementing BROS in the form of Hugging Face - transformers.
In this repository, we used two public benchmark datasets, FUNSD and SROIE.

License

Copyright 2022-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
Converts python code into c++ by using OpenAI CODEX.

🦾 codex_py2cpp 🤖 OpenAI Codex Python to C++ Code Generator Your Python Code is too slow? 🐌 You want to speed it up but forgot how to code in C++? ⌨

Alexander 423 Jan 01, 2023
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
🌐 Translation microservice powered by AI

Dot Translate 🌐 A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021