VoiceFixer VoiceFixer is a framework for general speech restoration.

Overview

Open In Colab PyPI version

VoiceFixer

VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech.

46dPxJ.png

Paper

⚠️ We submit this paper to ICLR2022. Preprint on arxiv will be available before Oct.03 2021!

Usage

⚠️ Still working on it, stay tuned! Expect to be available before 2021.09.30.

Environment

# Download dataset and prepare running environment
source init.sh 

Train from scratch

Let's take VF_UNet(voicefixer with unet as analysis module) as an example. Other model have the similar training and evaluation logic.

cd general_speech_restoration/voicefixer/unet
source run.sh

After that, you will get a log directory that look like this

├── unet
│   └── log
│       └── 2021-09-27-xxx
│           └── version_0
│               └── checkpoints
                    └──epoch=1.ckpt
│               └── code

Evaluation

Automatic evaluation and generate .csv file for the results.

cd general_speech_restoration/voicefixer/unet
# Basic usage
python3 handler.py  -c <str, path-to-checkpoint> \
                    -t <str, testset> \ 
                    -l <int, limit-utterance-number> \ 
                    -d <str, description of this evaluation> \ 

For example, if you like to evaluate on all testset. And each testset you intend to limit the number to 10 utterance.

python3 handler.py  -c  log/2021-09-27-xxx/version_0/checkpoints/epoch=1.ckpt \
                    -t  base \ 
                    -l  10 \ 
                    -d  ten_utterance_for_each_testset \ 

There are generally seven testsets:

  • base: all testset
  • clip: testset with speech that have clipping threshold of 0.1, 0.25, and 0.5
  • reverb: testset with reverberate speech
  • general_speech_restoration: testset with speech that contain all kinds of random distortions
  • enhancement: testset with noisy speech
  • speech_super_resolution: testset with low resolution speech that have sampling rate of 2kHz, 4kHz, 8kHz, 16kHz, and 24kHz.

Demo

Demo page

Demo page contains comparison between single task speech restoration, general speech restoration, and voicefixer.

Pip package

We wrote a pip package for voicefixer.

Colab

You can try voicefixer using your own voice on colab!

real-life-example real-life-example real-life-example

Project Structure

.
├── dataloaders 
│   ├── augmentation # code for speech data augmentation.
│   └── dataloader # code for different kinds of dataloaders.
├── datasets 
│   ├── datasetParser # code for preparing each dataset
│   └── se # Dataset for speech enhancement (source init.sh)
│       ├── RIR_44k # Room Impulse Response 44.1kHz
│       │   ├── test
│       │   └── train
│       ├── TestSets # Evaluation datasets
│       │   ├── ALL_GSR # General speech restoration testset
│       │   │   ├── simulated
│       │   │   └── target
│       │   ├── DECLI # Speech declipping testset
│       │   │   ├── 0.1 # Different clipping threshold
│       │   │   ├── 0.25
│       │   │   ├── 0.5
│       │   │   └── GroundTruth
│       │   ├── DENOISE # Speech enhancement testset
│       │   │   └── vd_test
│       │   │       ├── clean_testset_wav
│       │   │       └── noisy_testset_wav
│       │   ├── DEREV # Speech dereverberation testset
│       │   │   ├── GroundTruth
│       │   │   └── Reverb_Speech
│       │   └── SR # Speech super resolution testset
│       │       ├── GroundTruth
│       │       └── cheby1
│       │           ├── 1000 # Different cutoff frequencies
│       │           ├── 12000
│       │           ├── 2000
│       │           ├── 4000
│       │           └── 8000
│       ├── vd_noise # Noise training dataset
│       └── wav48 # Speech training dataset
│           ├── test # Not used, included for completeness
│           └── train 
├── evaluation # The code for model evaluation
├── exp_results # The Folder that store evaluation result (in handler.py).
├── general_speech_restoration # GSR 
│   ├── unet # GSR_UNet
│   │   └── model_kqq_lstm_mask_gan
│   └── voicefixer # Each folder contains the training entry for each model.
│       ├── dnn # VF_DNN
│       ├── lstm # VF_LSTM
│       ├── unet # VF_UNet
│       └── unet_small # VF_UNet_S
├── resources 
├── single_task_speech_restoration # SSR
│   ├── declip_unet # Declip_UNet
│   ├── derev_unet # Derev_UNet
│   ├── enh_unet # Enh_UNet
│   └── sr_unet # SR_UNet
├── tools
└── callbacks

Citation

⚠️ Will be available once the paper is ready.

An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
The official code for “DocTr: Document Image Transformer for Geometric Unwarping and Illumination Correction”, ACM MM, Oral Paper, 2021.

Good news! Our new work exhibits state-of-the-art performances on DocUNet benchmark dataset: DocScanner: Robust Document Image Rectification with Prog

Hao Feng 231 Dec 26, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022