Dope Wars game engine on StarkNet L2 roll-up

Related tags

Text Data & NLPRYO
Overview

RYO

Dope Wars game engine on StarkNet L2 roll-up.

What

TI-83 drug wars built as smart contract system.

Background mechanism design notion here.

Initial exploration / walkthrough viability testing blog here.

Join in and learn about:

- Cairo. A turing-complete language for programs that become proofs.
- StarkNet. An Ethereum L2 rollup with:
    - L1 for data availability
    - State transitions executed by validity proofs that the EVM checks.

Setup

Clone this repo and use our docker shell to interact with starknet:

git clone [email protected]:dopedao/RYO.git
cd RYO
bin/shell starknet --version

The CLI allows you to deploy to StarkNet and read/write to contracts already deployed. The CLI communicates with a server that StarkNet runs, which bundles the requests, executes the program (contracts are Cairo programs), creates and aggregates validity proofs, then posts them to the Goerli Ethereum testnet. Learn more in the Cairo language and StarkNet docs here, which also has instructions for manual installation if you are not using docker.

If using VS-code for writing code, install the extension for syntax highlighting:

curl -LO https://github.com/starkware-libs/cairo-lang/releases/download/v0.4.0/cairo-0.4.0.vsix
code --install-extension cairo-0.4.0.vsix
code .

Dev

Flow:

  1. Compile the contract with the CLI
  2. Test using pytest
  3. Deploy with CLI
  4. Interact using the CLI or the explorer

File name prefixes are paired (e.g., contract, ABI and test all share comon prefix).

Compile

The compiler will check the integrity of the code locally. It will also produce an ABI, which is a mapping of the contract functions (used to interact with the contract).

bin/shell starknet-compile contracts/GameEngineV1.cairo \
    --output contracts/GameEngineV1_compiled.json \
    --abi abi/GameEngineV1_contract_abi.json

bin/shell starknet-compile contracts/MarketMaker.cairo \
    --output contracts/MarketMaker_compiled.json \
    --abi abi/MarketMaker_contract_abi.json

Test

bin/shell pytest testing/GameEngineV1_contract_test.py

bin/shell pytest testing/MarketMaker_contract_test.py

Deploy

bin/shell starknet deploy --contract contracts/GameEngineV1_compiled.json \
    --network=alpha

bin/shell starknet deploy --contract contracts/MarketMaker_compiled.json \
    --network=alpha

Upon deployment, the CLI will return an address, which can be used to interact with.

Check deployment status by passing in the transaction ID you receive:

bin/shell starknet tx_status --network=alpha --id=176230

PENDING Means that the transaction passed the validation and is waiting to be sent on-chain.

{
    "block_id": 18880,
    "tx_status": "PENDING"
}

Interact

CLI - Write (initialise markets). Set up item_id=5 across all 40 locations. Each pair has 10x more money than item quantity. All items have the same curve

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_pairs_for_item \
    --inputs 5 \
        40 \
        20 40 60 80 100 120 140 160 180 200 \
        220 240 260 280 300 320 340 360 380 400 \
        420 440 460 480 500 520 540 560 580 600 \
        620 640 660 680 700 720 740 760 780 800 \
        40 \
        200 400 600 800 1000 1200 1400 1600 1800 2000 \
        2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 \
        4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 \
        6200 6400 6600 6800 7000 7200 7400 7600 7800 8000

Change 5 to another item_id in the range 1-10 to populate other curves.

CLI - Write (initialize user). Set up user_id=733 to have 2000 of item 5.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_user_amount \
    --inputs 733 5 2000

CLI - Read (user state)

bin/shell starknet call \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function check_user_state \
    --inputs 733

CLI - Write (Have a turn). User 733 goes to location 34 to sell (sell is 1, buy is 0) item 5, giving 100 units.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function have_turn \
    --inputs 733 34 1 5 100

Calling the check_user_state() function again reveals that the 100 units were exchanged for some quantity of money.

Alternatively, see and do all of the above with the Voyager browser here.

Game flow

admin ->
        initialise state variables
        lock admin power
user_1 ->
        have_turn(got_to_loc, trade_x_for_y)
            check if game finished.
            check user authentification.
            check if user allowed using game clock.
            add to random seed.
            user location update.
                decrease money count if new city.
            check for dealer dash (x %).
                check for chase dealer (x %).
                    item lost, no money gained.
            trade with market curve for location.
                decrease money/item, increase the other.
            check for any of:
                mugging (x %).
                    check for run (x %).
                        lose a percentage of money.
                gang war (x %).
                    check for fight (x %).
                        lose a percentage of money.
                cop raid (x %).
                    check for bribe (x %).
                        lose percentage of money & items held.
                find item (x %).
                    increase item balance.
                local shipment (x %).
                    increase item counts in suburb curves.
                warehouse seizure (x %).
                    decrease item counts in suburb curves.
            save next allowed turn as game_clock + n.
user2 -> (same as user_1)

Next steps

Building out parts to make a functional v1. Some good entry-level options for anyone wanting to try out Cairo.

  • Initialised multiple player states.
  • Turn rate limiting. Game has global clock that increments every time a turn occurs. User has a lockout of x clock ticks.
  • Game end criterion based on global clock.
  • Finish mappings/locations.json. Name places and implement different cost to travel for some locations.
    • Locations will e.g., be 10 cities [0, 9] each with 4 suburbs [0, 4].
    • E.g., locations 0, 11, 21, 31 are city 1. Locations 2, 12, 22, 32 are city 2. So location_id=27 is city 7, suburb 2. Free to travel to other suburbs in same city (7, 17, 37).
    • Need to create a file with nice city/subrub names for these in
  • Finish mappings/items.json. Populate and tweak the item names and item unit price. E.g., cocaine price per unit different from weed price per unit.
  • Finish mappings/initial_markets.csv. Create lists of market pair values to initialize the game with. E.g., for all 40 locations x 10 items = 400 money_count-item_count pairs as a separate file. A mapping of 600 units with 6000 money initialises a dealer in that location with 60 of the item at (6000/60) 100 money per item. This mapping should be in the ballpark of the value in items.json. The fact that values deviate, creates trade opportunities at the start of the game. (e.g., a location might have large quantity at lower price).
  • Refine both the likelihood (basis points per user turn) and impact (percentage change) that events have and treak the constanst at the top of contracts/GameEngineV1.cairo. E.g., how often should you get mugged, how much money would you lose.
  • Initialize users with money upon first turn. (e.g., On first turn triggers save of starting amount e.g., 10,000, then sets the flag to )
  • Create caps on maximum parameters (40 location_ids, 10k user_ids, 10 item_ids)
  • User authentication. E.g., signature verification.
  • Add health clock. E.g., some events lower health

Welcome:

  • PRs
  • Issues
  • Questions about Cairo
  • Ideas for the game
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023