Search with BERT vectors in Solr and Elasticsearch

Overview

BERT models with Solr and Elasticsearch

streamlit-search_demo_solr-2021-05-13-10-05-91.mp4
streamlit-search_demo_elasticsearch-2021-05-14-22-05-55.mp4

This code is described in the following Medium stories, taking one step at a time:

Neural Search with BERT and Solr (August 18,2020)

Fun with Apache Lucene and BERT Embeddings (November 15, 2020)

Speeding up BERT Search in Elasticsearch (March 15, 2021)

Ask Me Anything about Vector Search (June 20, 2021) This blog post gives the answers to the 3 most interesting questions asked during the AMA session at Berlin Buzzwords 2021. The video recording is available here: https://www.youtube.com/watch?v=blFe2yOD1WA

Bert in Solr hat Bert with_es burger


Tech stack:

  • bert-as-service
  • Hugging Face
  • solr / elasticsearch
  • streamlit
  • Python 3.7

Code for dealing with Solr has been copied from the great (and highly recommended) https://github.com/o19s/hello-ltr project.

Install tensorflow

pip install tensorflow==1.15.3

If you try to install tensorflow 2.3, bert service will fail to start, there is an existing issue about it.

If you encounter issues with the above installation, consider installing full list of packages:

pip install -r requirements_freeze.txt

Let's install bert-as-service components

pip install bert-serving-server

pip install bert-serving-client

Download a pre-trained BERT model

into the bert-model/ directory in this project. I have chosen uncased_L-12_H-768_A-12.zip for this experiment. Unzip it.

Now let's start the BERT service

bash start_bert_server.sh

Run a sample bert client

python src/bert_client.py

to compute vectors for 3 sample sentences:

    Bert vectors for sentences ['First do it', 'then do it right', 'then do it better'] : [[ 0.13186474  0.32404128 -0.82704437 ... -0.3711958  -0.39250174
      -0.31721866]
     [ 0.24873531 -0.12334424 -0.38933852 ... -0.44756213 -0.5591355
      -0.11345179]
     [ 0.28627345 -0.18580122 -0.30906814 ... -0.2959366  -0.39310536
       0.07640187]]

This sets up the stage for our further experiment with Solr.

Dataset

This is by far the key ingredient of every experiment. You want to find an interesting collection of texts, that are suitable for semantic level search. Well, maybe all texts are. I have chosen a collection of abstracts from DBPedia, that I downloaded from here: https://wiki.dbpedia.org/dbpedia-version-2016-04 and placed into data/dbpedia directory in bz2 format. You don't need to extract this file onto disk: the provided code will read directly from the compressed file.

Preprocessing and Indexing: Solr

Before running preprocessing / indexing, you need to configure the vector plugin, which allows to index and query the vector data. You can find the plugin for Solr 8.x here: https://github.com/DmitryKey/solr-vector-scoring

After the plugin's jar has been added, configure it in the solrconfig.xml like so:

">

  

Schema also requires an addition: field of type VectorField is required in order to index vector data:

">

  

Find ready-made schema and solrconfig here: https://github.com/DmitryKey/bert-solr-search/tree/master/solr_conf

Let's preprocess the downloaded abstracts, and index them in Solr. First, execute the following command to start Solr:

bin/solr start -m 2g

If during processing you will notice:

<...>/bert-solr-search/venv/lib/python3.7/site-packages/bert_serving/client/__init__.py:299: UserWarning: some of your sentences have more tokens than "max_seq_len=500" set on the server, as consequence you may get less-accurate or truncated embeddings.
here is what you can do:
- disable the length-check by create a new "BertClient(check_length=False)" when you do not want to display this warning
- or, start a new server with a larger "max_seq_len"
  '- or, start a new server with a larger "max_seq_len"' % self.length_limit)

The index_dbpedia_abstracts_solr.py script will output statistics:

Maximum tokens observed per abstract: 697
Flushing 100 docs
Committing changes
All done. Took: 82.46466588973999 seconds

We know how many abstracts there are:

bzcat data/dbpedia/long_abstracts_en.ttl.bz2 | wc -l
5045733

Preprocessing and Indexing: Elasticsearch

This project implements several ways to index vector data:

  • src/index_dbpedia_abstracts_elastic.py vanilla Elasticsearch: using dense_vector data type
  • src/index_dbpedia_abstracts_elastiknn.py Elastiknn plugin: implements own data type. I used elastiknn_dense_float_vector
  • src/index_dbpedia_abstracts_opendistro.py OpenDistro for Elasticsearch: uses nmslib to build Hierarchical Navigable Small World (HNSW) graphs during indexing

Each indexer relies on ready-made Elasticsearch mapping file, that can be found in es_conf/ directory.

Preprocessing and Indexing: GSI APU

In order to use GSI APU solution, a user needs to produce two files: numpy 2D array with vectors of desired dimension (768 in my case) a pickle file with document ids matching the document ids of the said vectors in Elasticsearch.

After these data files get uploaded to the GSI server, the same data gets indexed in Elasticsearch. The APU powered search is performed on up to 3 Leda-G PCIe APU boards. Since I’ve run into indexing performance with bert-as-service solution, I decided to take SBERT approach from Hugging Face to prepare the numpy and pickle array files. This allowed me to index into Elasticsearch freely at any time, without waiting for days. You can use this script to do this on DBPedia data, which allows choosing between:

EmbeddingModel.HUGGING_FACE_SENTENCE (SBERT)
EmbeddingModel.BERT_UNCASED_768 (bert-as-service)

To generate the numpy and pickle files, use the following script: scr/create_gsi_files.py. This script produces two files:

data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors.npy
data/1000000_EmbeddingModel.HUGGING_FACE_SENTENCE_vectors_docids.pkl

Both files are perfectly suitable for indexing with Solr and Elasticsearch.

To test the GSI plugin, you will need to upload these files to GSI server for loading them both to Elasticsearch and APU.

Running the BERT search demo

There are two streamlit demos for running BERT search for Solr and Elasticsearch. Each demo compares to BM25 based search. The following assumes that you have bert-as-service up and running (if not, laucnh it with bash start_bert_server.sh) and either Elasticsearch or Solr running with the index containing field with embeddings.

To run a demo, execute the following on the command line from the project root:

# for experiments with Elasticsearch
streamlit run src/search_demo_elasticsearch.py

# for experiments with Solr
streamlit run src/search_demo_solr.py
Owner
Dmitry Kan
I build search engines. Host of the Vector Podcast: https://www.youtube.com/channel/UCCIMPfR7TXyDvlDRXjVhP1g
Dmitry Kan
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022