This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

Overview

NORESQA: Speech Quality Assessment using Non-Matching References

This is a Pytorch implementation for using NORESQA. It contains minimal code to predict speech quality using NORESQA. Please see our Neurips 2021 paper referenced below for details.

Minimal basic usages as Speech Quality Assessment Metric.

Setup and basic usage

Required python libraries (latest): Pytorch with GPU support + Scipy + Numpy (>=1.14) + Librosa. Install all dependencies in a conda environment by using:

conda env create -f requirements.yml

Activate the created environment by:

conda activate noresqa

Additional notes:

  • Warning: Make sure your libraries (Cuda, Cudnn,...) are compatible with the pytorch version you're using or the code will not run.
  • Tested on Nvidia GeForce RTX 2080 GPU with Cuda (>=9.2) and CuDNN (>=7.3.0). CPU mode should also work.
  • The current pretrained models support sampling rate = 16KHz. The provided code automatically resamples the recording to 16KHz.

Please run the metric by using:

usage:

python main.py --GPU_id -1 --mode file --test_file path1 --nmr path2

arguments:
--GPU_id         [-1 or 0,1,2,3,...] specify -1 for CPU, and 0,1,2,3 .. as gpu numbers
--mode           [file,list] using single nmr or a list of nmr
--test_file      [path1] -> path of the test recording
--nmr            [path2 of file, or txt file with filenames]

The default output of the code should look like:

Probaility of the test speech cleaner than the given NMR = 0.11526459
NORESQA score of the test speech with respect to the given NMR = 18.595860697038006

Some GPU's are non-deterministic, and so the results could vary slightly in the lsb.

Please also note that the model inherently works when the size of the input recordings are same. If they are not, then the size of the reference recording is adjusted to match the size of the test recording.

Please see main.py for more information on how to use this for your task.

Citation

If you use this repository, please use the following to cite.

@inproceedings{
manocha2021noresqa,
title={{NORESQA}: A Framework for Speech Quality Assessment using Non-Matching References},
author={Pranay Manocha and Buye Xu and Anurag Kumar},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=RwASmRpLp-}
}

License

The majority of NORESQA is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Librosa is licensed under the ISC license; Pytorch and Numpy are licensed under the BSD license; Scipy and Scikit-learn is licensed under the BSD-3; Libsndfile is licensed under GNU LGPL; Pyyaml is licensed under MIT License.

Owner
Meta Research
Meta Research
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
A curated list of efficient attention modules

awesome-fast-attention A curated list of efficient attention modules

Sepehr Sameni 891 Dec 22, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021