Almost State-of-the-art Text Generation library

Overview

Ps: we are adding transformer model soon

Text Gen 🐐

Downloads python tensorflow PyPI

Almost State-of-the-art Text Generation library

Text gen is a python library that allow you build a custom text generation model with ease 😄 Something sweet built with Tensorflow and Pytorch(coming soon) - This is the brain of Rosalove ai (https://rosalove.xyz/)

How to use it

Install text-gen

pip install -U text-gen

import the library

from text_gen import ten_textgen as ttg

Load your data. your data must be in a text format.

Download the example data from the example folder

load data

data = 'rl.csv'
text = ttg.loaddata(data)

build our Model Architeture

pipeline = ttg.tentext(text)
seq_text = pipeline.sequence(padding_method = 'pre')
configg = pipeline.configmodel(seq_text, lstmlayer = 128, activation = 'softmax', dropout = 0.25)

train model

model_history = pipeline.fit(loss = 'categorical_crossentropy', optimizer = 'adam', batch = 300, metrics = 'accuracy', epochs = 500, verbose = 0, patience = 10)

generate text using the phrase

pipeline.predict('hello love', word_length = 200, segment = True)

plot loss and accuracy

pipeline.plot_loss_accuracy()

Hyper parameter optimization

Tune your model to know the best optimizer, activation method to use.

pipeline.hyper_params(epochs = 500)
pipeline.saveModel('model')

use a saved model for prediction

#the corpus is the train text file
ttg.load_model_predict(corpus = corpus, padding_method = 'pre', modelname = '../input/model2/model2textgen.h5', sample_text = 'yo yo', word_length = 100)

Give us a star 🐉

If you want to contribute, take a look at the issues and the Futurework.md file

Contributors

Comments
  • use pipenv for managing dependencies

    use pipenv for managing dependencies

    Consider using (pipenv)[https://pypi.org/project/pipenv/] to pin your dependencies. This would allow contributors to easily reproduce the project without messing up the dependencies and its also good on the long run for maintainability

    opened by paularah 1
  • [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 661/1000
    Why? Recently disclosed, Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1319443 | pillow:
    6.2.2 -> 8.3.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • Read on how to create a simple python library

    Read on how to create a simple python library

    https://towardsdatascience.com/how-to-build-your-first-python-package-6a00b02635c9

    https://medium.com/analytics-vidhya/how-to-create-a-python-library-7d5aea80cc3f

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorflow-serving-api 1.12.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    GPyOpt 1.2.6 requires GPy, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3180413 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires grpcio, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires grpcio, which is not installed.
    parameter-sherpa 1.0.6 requires pymongo, which is not installed.
    parameter-sherpa 1.0.6 requires GPyOpt, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Fix for 23 vulnerabilities

    [Snyk] Fix for 23 vulnerabilities

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    parameter-sherpa 1.0.6 requires scikit-learn, which is not installed.
    GPy 1.10.0 requires paramz, which is not installed.
    GPy 1.10.0 requires cython, which is not installed.
    GPy 1.10.0 has requirement scipy<1.5.0,>=1.3.0, but you have scipy 1.2.3.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055461 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055462 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 509/1000
    Why? Has a fix available, CVSS 5.9 | Out-of-bounds Write
    SNYK-PYTHON-PILLOW-1059090 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1080635 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1080654 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081494 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081501 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081502 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 654/1000
    Why? Has a fix available, CVSS 8.8 | Heap-based Buffer Overflow
    SNYK-PYTHON-PILLOW-1082329 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Insufficient Validation
    SNYK-PYTHON-PILLOW-1082750 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090584 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090586 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090587 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090588 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292150 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292151 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 566/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.6 | Buffer Overflow
    SNYK-PYTHON-PILLOW-1316216 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-Bounds
    SNYK-PYTHON-PILLOW-574573 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574574 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574575 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574576 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 469/1000
    Why? Has a fix available, CVSS 5.1 | Buffer Overflow
    SNYK-PYTHON-PILLOW-574577 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SCIKITLEARN-1079100 | scikit-learn:
    0.20.4 -> 0.24.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
Releases(v1.9.0)
Owner
Emeka boris ama
Machine Learning Engineer, Data Scientist, Youtuber and Advocacy
Emeka boris ama
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

NLP Boot Camp (Jan) Synopsis Full Name: Prameya Mohanty Name of your School: Delhi Public School, Rourkela Class: VIII Title of the Project: iTransect

TheCodingHub 1 Feb 01, 2022
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022