Almost State-of-the-art Text Generation library

Overview

Ps: we are adding transformer model soon

Text Gen 🐐

Downloads python tensorflow PyPI

Almost State-of-the-art Text Generation library

Text gen is a python library that allow you build a custom text generation model with ease 😄 Something sweet built with Tensorflow and Pytorch(coming soon) - This is the brain of Rosalove ai (https://rosalove.xyz/)

How to use it

Install text-gen

pip install -U text-gen

import the library

from text_gen import ten_textgen as ttg

Load your data. your data must be in a text format.

Download the example data from the example folder

load data

data = 'rl.csv'
text = ttg.loaddata(data)

build our Model Architeture

pipeline = ttg.tentext(text)
seq_text = pipeline.sequence(padding_method = 'pre')
configg = pipeline.configmodel(seq_text, lstmlayer = 128, activation = 'softmax', dropout = 0.25)

train model

model_history = pipeline.fit(loss = 'categorical_crossentropy', optimizer = 'adam', batch = 300, metrics = 'accuracy', epochs = 500, verbose = 0, patience = 10)

generate text using the phrase

pipeline.predict('hello love', word_length = 200, segment = True)

plot loss and accuracy

pipeline.plot_loss_accuracy()

Hyper parameter optimization

Tune your model to know the best optimizer, activation method to use.

pipeline.hyper_params(epochs = 500)
pipeline.saveModel('model')

use a saved model for prediction

#the corpus is the train text file
ttg.load_model_predict(corpus = corpus, padding_method = 'pre', modelname = '../input/model2/model2textgen.h5', sample_text = 'yo yo', word_length = 100)

Give us a star 🐉

If you want to contribute, take a look at the issues and the Futurework.md file

Contributors

Comments
  • use pipenv for managing dependencies

    use pipenv for managing dependencies

    Consider using (pipenv)[https://pypi.org/project/pipenv/] to pin your dependencies. This would allow contributors to easily reproduce the project without messing up the dependencies and its also good on the long run for maintainability

    opened by paularah 1
  • [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 661/1000
    Why? Recently disclosed, Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1319443 | pillow:
    6.2.2 -> 8.3.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • Read on how to create a simple python library

    Read on how to create a simple python library

    https://towardsdatascience.com/how-to-build-your-first-python-package-6a00b02635c9

    https://medium.com/analytics-vidhya/how-to-create-a-python-library-7d5aea80cc3f

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorflow-serving-api 1.12.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    GPyOpt 1.2.6 requires GPy, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3180413 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires grpcio, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires grpcio, which is not installed.
    parameter-sherpa 1.0.6 requires pymongo, which is not installed.
    parameter-sherpa 1.0.6 requires GPyOpt, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Fix for 23 vulnerabilities

    [Snyk] Fix for 23 vulnerabilities

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    parameter-sherpa 1.0.6 requires scikit-learn, which is not installed.
    GPy 1.10.0 requires paramz, which is not installed.
    GPy 1.10.0 requires cython, which is not installed.
    GPy 1.10.0 has requirement scipy<1.5.0,>=1.3.0, but you have scipy 1.2.3.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055461 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055462 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 509/1000
    Why? Has a fix available, CVSS 5.9 | Out-of-bounds Write
    SNYK-PYTHON-PILLOW-1059090 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1080635 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1080654 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081494 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081501 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081502 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 654/1000
    Why? Has a fix available, CVSS 8.8 | Heap-based Buffer Overflow
    SNYK-PYTHON-PILLOW-1082329 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Insufficient Validation
    SNYK-PYTHON-PILLOW-1082750 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090584 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090586 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090587 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090588 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292150 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292151 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 566/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.6 | Buffer Overflow
    SNYK-PYTHON-PILLOW-1316216 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-Bounds
    SNYK-PYTHON-PILLOW-574573 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574574 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574575 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574576 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 469/1000
    Why? Has a fix available, CVSS 5.1 | Buffer Overflow
    SNYK-PYTHON-PILLOW-574577 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SCIKITLEARN-1079100 | scikit-learn:
    0.20.4 -> 0.24.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
Releases(v1.9.0)
Owner
Emeka boris ama
Machine Learning Engineer, Data Scientist, Youtuber and Advocacy
Emeka boris ama
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 09, 2023
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022