SpikeX - SpaCy Pipes for Knowledge Extraction

Overview

SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Build Status pypi Version Code style: black

What's new in SpikeX 0.5.0

WikiGraph has never been so lightning fast:

  • 🌕 Performance mooning, thanks to the adoption of a sparse adjacency matrix to handle pages graph, instead of using igraph
  • 🚀 Memory optimization, with a consumption cut by ~40% and a compressed size cut by ~20%, introducing new bidirectional dictionaries to manage data
  • 📖 New APIs for a faster and easier usage and interaction
  • 🛠 Overall fixes, for a better graph and a better pages matching

Pipes

  • WikiPageX links Wikipedia pages to chunks in text
  • ClusterX picks noun chunks in a text and clusters them based on a revisiting of the Ball Mapper algorithm, Radial Ball Mapper
  • AbbrX detects abbreviations and acronyms, linking them to their long form. It is based on scispacy's one with improvements
  • LabelX takes labelings of pattern matching expressions and catches them in a text, solving overlappings, abbreviations and acronyms
  • PhraseX creates a Doc's underscore extension based on a custom attribute name and phrase patterns. Examples are NounPhraseX and VerbPhraseX, which extract noun phrases and verb phrases, respectively
  • SentX detects sentences in a text, based on Splitta with refinements

Tools

  • WikiGraph with pages as leaves linked to categories as nodes
  • Matcher that inherits its interface from the spaCy's one, but built using an engine made of RegEx which boosts its performance

Install SpikeX

Some requirements are inherited from spaCy:

  • spaCy version: 2.3+
  • Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
  • Python version: Python 3.6+ (only 64 bit)
  • Package managers: pip

Some dependencies use Cython and it needs to be installed before SpikeX:

pip install cython

Remember that a virtual environment is always recommended, in order to avoid modifying system state.

pip

At this point, installing SpikeX via pip is a one line command:

pip install spikex

Usage

Prerequirements

SpikeX pipes work with spaCy, hence a model its needed to be installed. Follow official instructions here. The brand new spaCy 3.0 is supported!

WikiGraph

A WikiGraph is built starting from some key components of Wikipedia: pages, categories and relations between them.

Auto

Creating a WikiGraph can take time, depending on how large is its Wikipedia dump. For this reason, we provide wikigraphs ready to be used:

Date WikiGraph Lang Size (compressed) Size (memory)
2021-04-01 enwiki_core EN 1.1GB 5.9GB
2021-04-01 simplewiki_core EN 19MB 120MB
2021-04-01 itwiki_core IT 189MB 1.1GB
More coming...

SpikeX provides a command to shortcut downloading and installing a WikiGraph (Linux or macOS, Windows not supported yet):

spikex download-wikigraph simplewiki_core

Manual

A WikiGraph can be created from command line, specifying which Wikipedia dump to take and where to save it:

spikex create-wikigraph \
  <YOUR-OUTPUT-PATH> \
  --wiki <WIKI-NAME, default: en> \
  --version <DUMP-VERSION, default: latest> \
  --dumps-path <DUMPS-BACKUP-PATH> \

Then it needs to be packed and installed:

spikex package-wikigraph \
  <WIKIGRAPH-RAW-PATH> \
  <YOUR-OUTPUT-PATH>

Follow the instructions at the end of the packing process and install the distribution package in your virtual environment. Now your are ready to use your WikiGraph as you wish:

from spikex.wikigraph import load as wg_load

wg = wg_load("enwiki_core")
page = "Natural_language_processing"
categories = wg.get_categories(page, distance=1)
for category in categories:
    print(category)

>>> Category:Speech_recognition
>>> Category:Artificial_intelligence
>>> Category:Natural_language_processing
>>> Category:Computational_linguistics

Matcher

The Matcher is identical to the spaCy's one, but faster when it comes to handle many patterns at once (order of thousands), so follow official usage instructions here.

A trivial example:

from spikex.matcher import Matcher
from spacy import load as spacy_load

nlp = spacy_load("en_core_web_sm")
matcher = Matcher(nlp.vocab)
matcher.add("TEST", [[{"LOWER": "nlp"}]])
doc = nlp("I love NLP")
for _, s, e in matcher(doc):
  print(doc[s: e])

>>> NLP

WikiPageX

The WikiPageX pipe uses a WikiGraph in order to find chunks in a text that match Wikipedia page titles.

from spacy import load as spacy_load
from spikex.wikigraph import load as wg_load
from spikex.pipes import WikiPageX

nlp = spacy_load("en_core_web_sm")
doc = nlp("An apple a day keeps the doctor away")
wg = wg_load("simplewiki_core")
wpx = WikiPageX(wg)
doc = wpx(doc)
for span in doc._.wiki_spans:
  print(span._.wiki_pages)

>>> ['An']
>>> ['Apple', 'Apple_(disambiguation)', 'Apple_(company)', 'Apple_(tree)']
>>> ['A', 'A_(musical_note)', 'A_(New_York_City_Subway_service)', 'A_(disambiguation)', 'A_(Cyrillic)')]
>>> ['Day']
>>> ['The_Doctor', 'The_Doctor_(Doctor_Who)', 'The_Doctor_(Star_Trek)', 'The_Doctor_(disambiguation)']
>>> ['The']
>>> ['Doctor_(Doctor_Who)', 'Doctor_(Star_Trek)', 'Doctor', 'Doctor_(title)', 'Doctor_(disambiguation)']

ClusterX

The ClusterX pipe takes noun chunks in a text and clusters them using a Radial Ball Mapper algorithm.

from spacy import load as spacy_load
from spikex.pipes import ClusterX

nlp = spacy_load("en_core_web_sm")
doc = nlp("Grab this juicy orange and watch a dog chasing a cat.")
clusterx = ClusterX(min_score=0.65)
doc = clusterx(doc)
for cluster in doc._.cluster_chunks:
  print(cluster)

>>> [this juicy orange]
>>> [a cat, a dog]

AbbrX

The AbbrX pipe finds abbreviations and acronyms in the text, linking short and long forms together:

from spacy import load as spacy_load
from spikex.pipes import AbbrX

nlp = spacy_load("en_core_web_sm")
doc = nlp("a little snippet with an abbreviation (abbr)")
abbrx = AbbrX(nlp.vocab)
doc = abbrx(doc)
for abbr in doc._.abbrs:
  print(abbr, "->", abbr._.long_form)

>>> abbr -> abbreviation

LabelX

The LabelX pipe matches and labels patterns in text, solving overlappings, abbreviations and acronyms.

from spacy import load as spacy_load
from spikex.pipes import LabelX

nlp = spacy_load("en_core_web_sm")
doc = nlp("looking for a computer system engineer")
patterns = [
  [{"LOWER": "computer"}, {"LOWER": "system"}],
  [{"LOWER": "system"}, {"LOWER": "engineer"}],
]
labelx = LabelX(nlp.vocab, ("TEST", patterns), validate=True, only_longest=True)
doc = labelx(doc)
for labeling in doc._.labelings:
  print(labeling, f"[{labeling.label_}]")

>>> computer system engineer [TEST]

PhraseX

The PhraseX pipe creates a custom Doc's underscore extension which fulfills with matches from phrase patterns.

from spacy import load as spacy_load
from spikex.pipes import PhraseX

nlp = spacy_load("en_core_web_sm")
doc = nlp("I have Melrose and McIntosh apples, or Williams pears")
patterns = [
  [{"LOWER": "mcintosh"}],
  [{"LOWER": "melrose"}],
]
phrasex = PhraseX(nlp.vocab, "apples", patterns)
doc = phrasex(doc)
for apple in doc._.apples:
  print(apple)

>>> Melrose
>>> McIntosh

SentX

The SentX pipe splits sentences in a text. It modifies tokens' is_sent_start attribute, so it's mandatory to add it before parser pipe in the spaCy pipeline:

from spacy import load as spacy_load
from spikex.pipes import SentX
from spikex.defaults import spacy_version

if spacy_version >= 3:
  from spacy.language import Language

    @Language.factory("sentx")
    def create_sentx(nlp, name):
        return SentX()

nlp = spacy_load("en_core_web_sm")
sentx_pipe = SentX() if spacy_version < 3 else "sentx"
nlp.add_pipe(sentx_pipe, before="parser")
doc = nlp("A little sentence. Followed by another one.")
for sent in doc.sents:
  print(sent)

>>> A little sentence.
>>> Followed by another one.

That's all folks

Feel free to contribute and have fun!

Owner
Erre Quadro Srl
Erre Quadro Srl
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022