Python module (C extension and plain python) implementing Aho-Corasick algorithm

Overview

pyahocorasick

Linux Master branch tests status Windows Master branch tests status

pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find multiple key strings occurrences at once in some input text. The library provides an ahocorasick Python module that you can use as a plain dict-like Trie or convert a Trie to an automaton for efficient Aho-Corasick search.

It is implemented in C and tested on Python 2.7 and 3.4+. It works on Linux, Mac and Windows.

The license is BSD-3-clause. Some utilities, such as tests and the pure Python automaton are dedicated to the Public Domain.

Download and source code

You can fetch pyahocorasick from:

Quick start

This module is written in C. You need a C compiler installed to compile native CPython extensions. To install:

pip install pyahocorasick

Then create an Automaton:

>>> import ahocorasick
>>> A = ahocorasick.Automaton()

You can use the Automaton class as a trie. Add some string keys and their associated value to this trie. Here we associate a tuple of (insertion index, original string) as a value to each key string we add to the trie:

>>> for idx, key in enumerate('he her hers she'.split()):
...   A.add_word(key, (idx, key))

Then check if some string exists in the trie:

>>> 'he' in A
True
>>> 'HER' in A
False

And play with the get() dict-like method:

>>> A.get('he')
(0, 'he')
>>> A.get('she')
(3, 'she')
>>> A.get('cat', 'not exists')
'not exists'
>>> A.get('dog')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError

Now convert the trie to an Aho-Corasick automaton to enable Aho-Corasick search:

>>> A.make_automaton()

Then search all occurrences of the keys (the needles) in an input string (our haystack).

Here we print the results and just check that they are correct. The Automaton.iter() method return the results as two-tuples of the end index where a trie key was found in the input string and the associated value for this key. Here we had stored as values a tuple with the original string and its trie insertion order:

>>> for end_index, (insert_order, original_value) in A.iter(haystack):
...     start_index = end_index - len(original_value) + 1
...     print((start_index, end_index, (insert_order, original_value)))
...     assert haystack[start_index:start_index + len(original_value)] == original_value
...
(1, 2, (0, 'he'))
(1, 3, (1, 'her'))
(1, 4, (2, 'hers'))
(4, 6, (3, 'she'))
(5, 6, (0, 'he'))

You can also create an eventually large automaton ahead of time and pickle it to re-load later. Here we just pickle to a string. You would typically pickle to a file instead:

>>> import cPickle
>>> pickled = cPickle.dumps(A)
>>> B = cPickle.loads(pickled)
>>> B.get('he')
(0, 'he')
See also:

Documentation

The full documentation including the API overview and reference is published on readthedocs.

Overview

With an Aho-Corasick automaton you can efficiently search all occurrences of multiple strings (the needles) in an input string (the haystack) making a single pass over the input string. With pyahocorasick you can eventually build large automatons and pickle them to reuse them over and over as an indexed structure for fast multi pattern string matching.

One of the advantages of an Aho-Corasick automaton is that the typical worst-case and best-case runtimes are about the same and depends primarily on the size of the input string and secondarily on the number of matches returned. While this may not be the fastest string search algorithm in all cases, it can search for multiple strings at once and its runtime guarantees make it rather unique. Because pyahocorasick is based on a Trie, it stores redundant keys prefixes only once using memory efficiently.

A drawback is that it needs to be constructed and "finalized" ahead of time before you can search strings. In several applications where you search for several pre-defined "needles" in a variable "haystacks" this is actually an advantage.

Aho-Corasick automatons are commonly used for fast multi-pattern matching in intrusion detection systems (such as snort), anti-viruses and many other applications that need fast matching against a pre-defined set of string keys.

Internally an Aho-Corasick automaton is typically based on a Trie with extra data for failure links and an implementation of the Aho-Corasick search procedure.

Behind the scenes the pyahocorasick Python library implements these two data structures: a Trie and an Aho-Corasick string matching automaton. Both are exposed through the Automaton class.

In addition to Trie-like and Aho-Corasick methods and data structures, pyahocorasick also implements dict-like methods: The pyahocorasick Automaton is a Trie a dict-like structure indexed by string keys each associated with a value object. You can use this to retrieve an associated value in a time proportional to a string key length.

pyahocorasick is available in two flavors:

  • a CPython C-based extension, compatible with Python 2 and 3.
  • a simpler pure Python module, compatible with Python 2 and 3. This is only available in the source repository (not on Pypi) under the py/ directory and has a slightly different API.

Unicode and bytes

The type of strings accepted and returned by Automaton methods are either unicode or bytes, depending on a compile time settings (preprocessor definition of AHOCORASICK_UNICODE as set in setup.py).

The Automaton.unicode attributes can tell you how the library was built. On Python 3, unicode is the default. On Python 2, bytes is the default and only value.

Warning

When the library is built with unicode support on Python 3, an Automaton will store 2 or 4 bytes per letter, depending on your Python installation. When built for bytes, only one byte per letter is needed.

Unicode is NOT supported on Python 2 for now.

Build and install from PyPi

To install for common operating systems, use pip. Pre-built wheels should be available on Pypi at some point in the future:

pip install pyahocorasick

To build from sources you need to have a C compiler installed and configured which should be standard on Linux and easy to get on MacOSX.

On Windows and Python 2.7 you need the Microsoft Visual C++ Compiler for Python 2.7 (aka. Visual Studio 2008). There have been reports that pyahocorasick does not build yet with MinGW. It may build with cygwin but this has not been tested. If you get this working with these platforms, please report in a ticket!

To build from sources, clone the git repository or download and extract the source archive.

Install pip (and its setuptools companion) and then run (in a virtualenv of course!):

pip install .

If compilation succeeds, the module is ready to use.

Support

Support is available through the GitHub issue tracker to report bugs or ask questions.

Contributing

You can submit contributions through GitHub pull requests.

Authors

The initial author and maintainer is Wojciech Muła. Philippe Ombredanne, the current co-owner, rewrote documentation, setup CI servers and did a whole lot of work to make this module better accessible to end users.

Alphabetic list of authors:

  • Andrew Grigorev
  • Bogdan
  • David Woakes
  • Edward Betts
  • Frankie Robertson
  • Frederik Petersen
  • gladtosee
  • INADA Naoki
  • Jan Fan
  • Pastafarianist
  • Philippe Ombredanne
  • Renat Nasyrov
  • Sylvain Zimmer
  • Xiaopeng Xu

This library would not be possible without help of many people, who contributed in various ways. They created pull requests, reported bugs as GitHub issues or via direct messages, proposed fixes, or spent their valuable time on testing.

Thank you.

License

This library is licensed under very liberal BSD-3-Clause license. Some portions of the code are dedicated to the public domain such as the pure Python automaton and test code.

Full text of license is available in LICENSE file.

Other Aho-Corasick implementations for Python you can consider

While pyahocorasick tries to be the finest and fastest Aho Corasick library for Python you may consider these other libraries:

  • Written in pure Python.
  • Poor performance.
  • Written in pure Python.
  • Better performance than py-aho-corasick.
  • Using pypy, ahocorapy's search performance is only slightly worse than pyahocorasick's.
  • Performs additional suffix shortcutting (more setup overhead, less search overhead for suffix lookups).
  • Includes visualization tool for resulting automaton (using pygraphviz).
  • MIT-licensed, 100% test coverage, tested on all major python versions (+ pypy)
  • Written in C. Does not return overlapping matches.
  • Does not compile on Windows (July 2016).
  • No support for the pickle protocol.
  • Written in Cython.
  • Large automaton may take a long time to build (July 2016)
  • No support for a dict-like protocol to associate a value to a string key.
  • Written in C.
  • seems unmaintained (last update in 2005).
  • GPL-licensed.
Owner
Wojciech Muła
Wojciech Muła
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.

UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s

Google 1.4k Dec 28, 2022
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022