Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Overview

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker

Earlier this year we announced a strategic collaboration with Amazon to make it easier for companies to use Hugging Face Transformers in Amazon SageMaker, and ship cutting-edge Machine Learning features faster. We introduced new Hugging Face Deep Learning Containers (DLCs) to train and deploy Hugging Face Transformers in Amazon SageMaker.

In addition to the Hugging Face Inference DLCs, we created a Hugging Face Inference Toolkit for SageMaker. This Inference Toolkit leverages the pipelines from the transformers library to allow zero-code deployments of models, without requiring any code for pre-or post-processing.

In October and November, we held a workshop series on β€œEnterprise-Scale NLP with Hugging Face & Amazon SageMaker”. This workshop series consisted out of 3 parts and covers:

  • Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it
  • Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker
  • MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

We recorded all of them so you are now able to do the whole workshop series on your own to enhance your Hugging Face Transformers skills with Amazon SageMaker or vice-versa.

Below you can find all the details of each workshop and how to get started.

πŸ§‘πŸ»β€πŸ’» Github Repository: https://github.com/philschmid/huggingface-sagemaker-workshop-series

πŸ“Ί   Youtube Playlist: https://www.youtube.com/playlist?list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ

Note: The Repository contains instructions on how to access a temporary AWS, which was available during the workshops. To be able to do the workshop now you need to use your own or your company AWS Account.

In Addition to the workshop we created a fully dedicated Documentation for Hugging Face and Amazon SageMaker, which includes all the necessary information. If the workshop is not enough for you we also have 15 additional getting samples Notebook Github repository, which cover topics like distributed training or leveraging Spot Instances.

Workshop 1: Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it

In Workshop 1 you will learn how to use Amazon SageMaker to train a Hugging Face Transformer model and deploy it afterwards.

  • Prepare and upload a test dataset to S3
  • Prepare a fine-tuning script to be used with Amazon SageMaker Training jobs
  • Launch a training job and store the trained model into S3
  • Deploy the model after successful training

πŸ§‘πŸ»β€πŸ’» Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_1_getting_started_with_amazon_sagemaker

πŸ“Ί  Youtube: https://www.youtube.com/watch?v=pYqjCzoyWyo&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=5s&ab_channel=HuggingFace

Workshop 2: Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker

In Workshop 2 learn how to use Amazon SageMaker to deploy, scale & monitor your Hugging Face Transformer models for production workloads.

  • Run Batch Prediction on JSON files using a Batch Transform
  • Deploy a model from hf.co/models to Amazon SageMaker and run predictions
  • Configure autoscaling for the deployed model
  • Monitor the model to see avg. request time and set up alarms

πŸ§‘πŸ»β€πŸ’» Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_2_going_production

πŸ“Ί  Youtube: https://www.youtube.com/watch?v=whwlIEITXoY&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=61s

Workshop 3: MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

In Workshop 3 learn how to build an End-to-End MLOps Pipeline for Hugging Face Transformers from training to production using Amazon SageMaker.

We are going to create an automated SageMaker Pipeline which:

  • processes a dataset and uploads it to s3
  • fine-tunes a Hugging Face Transformer model with the processed dataset
  • evaluates the model against an evaluation set
  • deploys the model if it performed better than a certain threshold

πŸ§‘πŸ»β€πŸ’» Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_3_mlops

πŸ“Ί  Youtube: https://www.youtube.com/watch?v=XGyt8gGwbY0&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=7

Access Workshop AWS Account

For this workshop you’ll get access to a temporary AWS Account already pre-configured with Amazon SageMaker Notebook Instances. Follow the steps in this section to login to your AWS Account and download the workshop material.

1. To get started navigate to - https://dashboard.eventengine.run/login

setup1

Click on Accept Terms & Login

2. Click on Email One-Time OTP (Allow for up to 2 mins to receive the passcode)

setup2

3. Provide your email address

setup3

4. Enter your OTP code

setup4

5. Click on AWS Console

setup5

6. Click on Open AWS Console

setup6

7. In the AWS Console click on Amazon SageMaker

setup7

8. Click on Notebook and then on Notebook instances

setup8

9. Create a new Notebook instance

setup9

10. Configure Notebook instances

  • Make sure to increase the Volume Size of the Notebook if you want to work with big models and datasets
  • Add your IAM_Role with permissions to run your SageMaker Training And Inference Jobs
  • Add the Workshop Github Repository to the Notebook to preload the notebooks: https://github.com/philschmid/huggingface-sagemaker-workshop-series.git

setup10

11. Open the Lab and select the right kernel you want to do and have fun!

Open the workshop you want to do (workshop_1_getting_started_with_amazon_sagemaker/) and select the pytorch kernel

setup11

Owner
Philipp Schmid
Machine Learning Engineer & Tech Lead at Hugging FaceπŸ‘¨πŸ»β€πŸ’» πŸ€— Cloud enthusiast ☁️ AWS ML HERO πŸ¦ΈπŸ»β€β™‚οΈ Nuremberg πŸ‡©πŸ‡ͺ
Philipp Schmid
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! πŸŽ‰ What is this? At this repo, I'm

M. Yusuf SarΔ±gΓΆz 13 Oct 10, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
TextAttack πŸ™ is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack πŸ™ Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About β€’ Setup β€’ Usage β€’ Design About TextAttack

QData 2.2k Jan 03, 2023
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022