Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

Overview

KoSimCSE

  • Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch

Installation

git clone https://github.com/BM-K/KoSimCSE.git
cd KoSimCSE
git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
pip install .
cd ..
pip install -r requirements.txt

Training - only supervised

  • Model

  • Dataset

  • Setting

    • epochs: 3
    • dropout: 0.1
    • batch size: 256
    • temperature: 0.05
    • learning rate: 5e-5
    • warm-up ratio: 0.05
    • max sequence length: 50
    • evaluation steps during training: 250
  • Run train -> test -> semantic_search

bash run_example.sh

Pre-Trained Models

  • Using BERT [CLS] token representation
  • Pre-Trained model check point

Performance

Model Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSBERT_SKT* 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22
KoSimCSE_SKT 81.55 82.11 81.70 81.69 81.65 81.60 78.19 77.18

Example Downstream Task

Semantic Search

python SemanticSearch.py
import numpy as np
from model.utils import pytorch_cos_sim
from data.dataloader import convert_to_tensor, example_model_setting


def main():
    model_ckpt = './output/nli_checkpoint.pt'
    model, transform, device = example_model_setting(model_ckpt)

    # Corpus with example sentences
    corpus = ['한 남자가 음식을 먹는다.',
              '한 남자가 빵 한 조각을 먹는다.',
              '그 여자가 아이를 돌본다.',
              '한 남자가 말을 탄다.',
              '한 여자가 바이올린을 연주한다.',
              '두 남자가 수레를 숲 속으로 밀었다.',
              '한 남자가 담으로 싸인 땅에서 백마를 타고 있다.',
              '원숭이 한 마리가 드럼을 연주한다.',
              '치타 한 마리가 먹이 뒤에서 달리고 있다.']

    inputs_corpus = convert_to_tensor(corpus, transform)

    corpus_embeddings = model.encode(inputs_corpus, device)

    # Query sentences:
    queries = ['한 남자가 파스타를 먹는다.',
               '고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.',
               '치타가 들판을 가로 질러 먹이를 쫓는다.']

    # Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
    top_k = 5
    for query in queries:
        query_embedding = model.encode(convert_to_tensor([query], transform), device)
        cos_scores = pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
        cos_scores = cos_scores.cpu().detach().numpy()

        top_results = np.argpartition(-cos_scores, range(top_k))[0:top_k]

        print("\n\n======================\n\n")
        print("Query:", query)
        print("\nTop 5 most similar sentences in corpus:")

        for idx in top_results[0:top_k]:
            print(corpus[idx].strip(), "(Score: %.4f)" % (cos_scores[idx]))

Result

Query: 한 남자가 파스타를 먹는다.

Top 5 most similar sentences in corpus:
한 남자가 음식을 먹는다. (Score: 0.6002)
한 남자가 빵 한 조각을 먹는다. (Score: 0.5938)
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.0696)
한 남자가 말을 탄다. (Score: 0.0328)
원숭이 한 마리가 드럼을 연주한다. (Score: -0.0048)


======================


Query: 고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.

Top 5 most similar sentences in corpus:
원숭이 한 마리가 드럼을 연주한다. (Score: 0.6489)
한 여자가 바이올린을 연주한다. (Score: 0.3670)
한 남자가 말을 탄다. (Score: 0.2322)
그 여자가 아이를 돌본다. (Score: 0.1980)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.1628)


======================


Query: 치타가 들판을 가로 질러 먹이를 쫓는다.

Top 5 most similar sentences in corpus:
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.7756)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.1814)
한 남자가 말을 탄다. (Score: 0.1666)
원숭이 한 마리가 드럼을 연주한다. (Score: 0.1530)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.1270)

Citing

SimCSE

@article{gao2021simcse,
   title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
   author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
   journal={arXiv preprint arXiv:2104.08821},
   year={2021}
}

KorNLU Datasets

@article{ham2020kornli,
  title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
  author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
  journal={arXiv preprint arXiv:2004.03289},
  year={2020}
}
Owner
Self-softmax
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021