Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

Overview

KoSimCSE

  • Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch

Installation

git clone https://github.com/BM-K/KoSimCSE.git
cd KoSimCSE
git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
pip install .
cd ..
pip install -r requirements.txt

Training - only supervised

  • Model

  • Dataset

  • Setting

    • epochs: 3
    • dropout: 0.1
    • batch size: 256
    • temperature: 0.05
    • learning rate: 5e-5
    • warm-up ratio: 0.05
    • max sequence length: 50
    • evaluation steps during training: 250
  • Run train -> test -> semantic_search

bash run_example.sh

Pre-Trained Models

  • Using BERT [CLS] token representation
  • Pre-Trained model check point

Performance

Model Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSBERT_SKT* 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22
KoSimCSE_SKT 81.55 82.11 81.70 81.69 81.65 81.60 78.19 77.18

Example Downstream Task

Semantic Search

python SemanticSearch.py
import numpy as np
from model.utils import pytorch_cos_sim
from data.dataloader import convert_to_tensor, example_model_setting


def main():
    model_ckpt = './output/nli_checkpoint.pt'
    model, transform, device = example_model_setting(model_ckpt)

    # Corpus with example sentences
    corpus = ['한 남자가 음식을 먹는다.',
              '한 남자가 빵 한 조각을 먹는다.',
              '그 여자가 아이를 돌본다.',
              '한 남자가 말을 탄다.',
              '한 여자가 바이올린을 연주한다.',
              '두 남자가 수레를 숲 속으로 밀었다.',
              '한 남자가 담으로 싸인 땅에서 백마를 타고 있다.',
              '원숭이 한 마리가 드럼을 연주한다.',
              '치타 한 마리가 먹이 뒤에서 달리고 있다.']

    inputs_corpus = convert_to_tensor(corpus, transform)

    corpus_embeddings = model.encode(inputs_corpus, device)

    # Query sentences:
    queries = ['한 남자가 파스타를 먹는다.',
               '고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.',
               '치타가 들판을 가로 질러 먹이를 쫓는다.']

    # Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
    top_k = 5
    for query in queries:
        query_embedding = model.encode(convert_to_tensor([query], transform), device)
        cos_scores = pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
        cos_scores = cos_scores.cpu().detach().numpy()

        top_results = np.argpartition(-cos_scores, range(top_k))[0:top_k]

        print("\n\n======================\n\n")
        print("Query:", query)
        print("\nTop 5 most similar sentences in corpus:")

        for idx in top_results[0:top_k]:
            print(corpus[idx].strip(), "(Score: %.4f)" % (cos_scores[idx]))

Result

Query: 한 남자가 파스타를 먹는다.

Top 5 most similar sentences in corpus:
한 남자가 음식을 먹는다. (Score: 0.6002)
한 남자가 빵 한 조각을 먹는다. (Score: 0.5938)
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.0696)
한 남자가 말을 탄다. (Score: 0.0328)
원숭이 한 마리가 드럼을 연주한다. (Score: -0.0048)


======================


Query: 고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.

Top 5 most similar sentences in corpus:
원숭이 한 마리가 드럼을 연주한다. (Score: 0.6489)
한 여자가 바이올린을 연주한다. (Score: 0.3670)
한 남자가 말을 탄다. (Score: 0.2322)
그 여자가 아이를 돌본다. (Score: 0.1980)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.1628)


======================


Query: 치타가 들판을 가로 질러 먹이를 쫓는다.

Top 5 most similar sentences in corpus:
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.7756)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.1814)
한 남자가 말을 탄다. (Score: 0.1666)
원숭이 한 마리가 드럼을 연주한다. (Score: 0.1530)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.1270)

Citing

SimCSE

@article{gao2021simcse,
   title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
   author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
   journal={arXiv preprint arXiv:2104.08821},
   year={2021}
}

KorNLU Datasets

@article{ham2020kornli,
  title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
  author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
  journal={arXiv preprint arXiv:2004.03289},
  year={2020}
}
Owner
Self-softmax
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank li

Tae-Hwan Jung 11.9k Jan 08, 2023
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022