Xview3 solution - XView3 challenge, 2nd place solution

Overview

Xview3, 2nd place solution

https://iuu.xview.us/

test split aggregate score
public 0.593
holdout 0.604

Inference

To reproduce the submission results, first you need to install the required packages. The easiest way is to use docker to build an image or pull a prebuilt docker image.

Prebuilt docker image

One can pull the image from docker hub and use it for inference docker pull selimsefhub/xview3:mse_v2l_v2l_v3m_nf_b7_r34

Inference specification is the same as for XView reference solution

docker run --shm-size 16G --gpus=1 --mount type=bind,source=/home/xv3data,target=/on-docker/xv3data selimsefhub/xview3:mse_v2l_v2l_v3m_nf_b7_r34 /on-docker/xv3data/ 0157baf3866b2cf9v /on-docker/xv3data/prediction/prediction.csv

Build from scratch

docker build -t xview3 .

Training

For training I used an instance with 4xRTX A6000. For GPUs with smaller VRAM you will need to reduce crop sizes in configurations. As I did not make small tiles of large tiff and used memmap instead, fast disks like M.2 (ideally in raid0) should be used.

To reproduce training from scratch:

  1. build docker image as described above
  2. run docker image with modified entrypoint, e.g. docker run --rm --network=host --entrypoint /bin/bash --gpus all --ipc host -v /mnt:/mnt -it xview3:latest
  3. run ./train_all.sh NUM_GPUS DATA_DIR SHORE_DIR VAL_OUT_DIR, where DATA_DIR is the root directory with the dataset, SHORE_DIR path to shoreline data for validation set, VAL_OUT_DIR any path where csv prediction will be stored on evaluation phase after each epoch
  4. example ./train_all.sh 4 /mnt/md0/datasets/xview3/ /mnt/md0/datasets/xview3/shoreline/validation /mnt/md0/datasets/xview3/oof/
  5. it will overwrite existing weights under weights directory in container

Training time

As I used full resolution segmentation it was quite slow, 9-15 hours per model on 4 gpus.

Solution approach overview

Maritime object detection can be transformed to a binary segmentation and regressing problem using UNet like convolutional neural networks with the multiple outputs.

Targets

Model architecture and outputs

Generally I used UNet like encoder-decoder model with the following backbones:

  • EfficientNet V2 L - best performing
  • EfficientNet V2 M
  • EfficientNet B7
  • NFNet L0 (variant implemented by Ross Wightman). Works great with small batches due to absence of BatchNorm layers.
  • Resnet34

For the decoder I used standard UNet decoder with nearest upsampling without batch norm. SiLU was used as activation for convolutional layers. I used full resolution prediction for the masks.

Detection

Centers of objects are predicted as gaussians with sigma=2 pixels. Values are scaled between 0-255. Quality of dense gaussians is the most important part to obtain high aggregate score. During the competition I played with different loss functions with varied success:

  • Pure MSE loss - had high precision but low recall which was not good enough for the F1 score
  • MAE loss did not produce acceptable results
  • Thresholded MSE with sum reduction showed best results. Low value predictions did not play any role for the model's quality, so they are ignored. Though loss weight needed to be tuned properly.

Vessel classification

Vessel masks were prepared as binary round objects with fixed radius (4 pixels) Missing vessel value was transformed to 255 mask that was ignored in the loss function. As a loss function I used combination of BCE, Focal and SoftDice losses.

Fishing classification

Fishing masks were prepared the same way as vessel masks

Length estimation

Length mask - round objects with fixed radius and pixel values were set to length of the object. Missing length was ignored in the loss function. As a loss function for length at first I used MSE but then change to the loss function that directly reflected the metric. I.e.length_loss = abs(target - predicted_value)/target

Training procedure

Data

I tried to use train data split but annotation quality is not good enough and even pretraining on full train set and the finetuning on validation data was not better than simply using only validation data. In the end I used pure validation data with small holdout sets for evaluation. In general there was a data leak between val/train/test splits and I tried to use clean non overlapping validation which did not help and did not represent public scores well.
Data Leak

Optimization

Usually AdamW converges faster and provides better metrics for binary segmentation problems but it is prone to unstable training in mixed precision mode (NaNs/Infs in loss values). That's why as an optimizer I used SGD with the following parameters:

  • initial learning rate 0.003
  • cosine LR decay
  • weight decay 1e-4
  • nesterov momentum
  • momentum=0.9

For each model there were around 20-30k iterations. As I used SyncBN and 4 GPUs batch size=2 was good enough and I used larger crops instead of large batch size.

Inference

I used overlap inference with slices of size 3584x3584 and overlap 704 pixels. To reduce memory footprint predictions were transformed to uint8 and float16 data type before prostprocessing. See inference/run_inference.py for details.

Postprocessing

After center, vessel, fishing, length pixel masks are predicted they need to be transformed to detections in CSV format. From center gaussians I just used tresholding and found connected components. Each component is considered as a detected object. I used centroids of objects to obtain mean values for vessel/fishing/lengths from the respective masks.

Data augmentations

I only used random crops and random rotate 180. Ideally SAR orientation should be provided with the data (as in Spacenet 6 challenge) because SAR artifacts depend on Satellite direction.

Data acquisition, processing, and manipulation

Input

  • 2 SAR channels (VV, VH)
  • custom normalization (Intensity + 40)/15
  • missing pixel values changed to -100 before normalization

Spatial resolution of the supplementary data is very low and doesn't bring any value to the models.

During training and inference I used tifffile.memmap and cropped data from memory mapped file in order to avoid tile splitting.

You might also like...
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

 Meli Data Challenge 2021 - First Place Solution
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

The sixth place winning solution (6/220) in 2021 Gaofen Challenge.
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

Owner
Selim Seferbekov
Selim Seferbekov
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022