Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Related tags

Deep LearningSMFI
Overview

Fight Detection from Still Images in the Wild

Detecting fights from still images is an important task required to limit the distribution of social media images with fight content, in order to prevent the negative effects of such violent media items. For this reason, in this study we addressed the problem of fight detection from still images collected from web and social media. We explored how well one can detect fights from just a single still image.

In this context, a new image dataset on the fight recognition from still images task is collected named Social Media Fight Images (SMFI) dataset. The dataset samples gathered from social media (Twitter and Google) and NTU-CCTV Fights 1 dataset. Since the main concern is recognizing fight actions in the wild, real-world scenarios are included in the dataset where a mass amount of them are spontaneous recordings of fight actions. Using different keywords while crawling the data, the regional diversity is also maintained since the social media uploadings are mostly regional where users share the content in their own language. Some example images from the dataset are given below:

samples

Both fight and non-fight samples are collected from the same domain where the non-fight samples are also content likely to be shared on social media. Hard non-fight samples are also included in the dataset which displays the actions that might be misinterpreted as fight such as hugging, throwing ball, dancing and more. This prevents the dataset bias, so that the trained models focuses on the actions and the performers on the scene instead of benefiting other characteristics such as motion blur. The distribution of the dataset samples among each class and source is given below:

Twitter Google NTU CCTV-Fights Total
Fight 2247 162 330 2739
Non-fight 2642 146 164 2952
Total 4889 308 494 5691

Due to the copyright issues the dataset images are not shared directly and the links to the images / videos are shared. As the dataset samples might be deleted in time by the users or the authorities, the size of the dataset is subject to change.

Dataset Format

The dataset samples are shared through a CSV file where the columns are as follows:

  • Image ID: Unique ID assigned to each image.
  • Class: class of the image as fight / nofight
  • Source: The source of the images or videos as twitter_img / twitter_video / google / ntu-cctv
  • URL: The link for the images / videos.
    • For Twitter and Google data, image and video URLs are shared.
    • For the NTU CCTV-Fights data, the path to the original video is shared.
  • Frame number: If the image is extracted from a video, this column indicates the number of frame within the video.
    • For Twitter videos, the frame number is the number of frame (0-9) out of 10 uniformly sampled frames from each video.
    • For NTU CCTV-Fight videos, the frame number is the number of frame (0-N) out of all frames (N) extracted from each video.

In order to retrieve the dataset, you should first download the NTU CCTV-Fights here.

Citation

TBA

References

1 Mauricio Perez, Alex C. Kot, Anderson Rocha, “Detection of Real-world Fights in Surveillance Videos”, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019

Owner
Şeymanur Aktı
Şeymanur Aktı
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020