E2VID_ROS - E2VID_ROS: E2VID to a real-time system

Overview

E2VID_ROS

Introduce

We extend E2VID to a real-time system. Because Python ROS callback has a large delay, we use dvs_event_server to transport "dvs/events" ROS topic to Python.

Install with Anaconda

In addition to dependencies E2VID needs, some packages are needed. Enter the E2VID conda environment, and then

pip install rospkg
pip install pyzmq
pip install protobuf

Usage

Adjust the event camera parameter according to your camera and surroundings in run_reconstruction_ros.py

self.width = 346
self.height = 260
self.event_window_size = 30000

Adjust the event topic name and the event window size in dvs_event_server.launch

<param name="/event_topic_name" type="str" value="/dvs/events"/>
<param name="/event_window_size" type="int" value="30000" />

Make sure the ip address and the port are the same as the dvs_event_server.launch in run_reconstruction_ros.py

self.socket.connect('tcp://127.0.0.1:10001')
<param name="/ip_address" type="str" value="127.0.0.1" />
<param name="/port" type="str" value="10001" />

First run dvs_event_server

roslaunch dvs_event_server dvs_event_server.launch

And then run E2VID_ROS (when closing, run_reconstruction_ros.py should be closed before dvs_event_server)

python run_reconstruction_ros.py

You can play the rosbag or use your own camera

rosbag play example.bag

You can use dvs_renderer or dv_ros to compare the reconstructed frame with the event frame.

You can use rqt_image_view or rviz to visualize the /e2vid/image topic




High Speed and High Dynamic Range Video with an Event Camera

High Speed and High Dynamic Range Video with an Event Camera

This is the code for the paper High Speed and High Dynamic Range Video with an Event Camera by Henri Rebecq, Rene Ranftl, Vladlen Koltun and Davide Scaramuzza:

You can find a pdf of the paper here. If you use any of this code, please cite the following publications:

@Article{Rebecq19pami,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {High Speed and High Dynamic Range Video with an Event Camera},
  journal       = {{IEEE} Trans. Pattern Anal. Mach. Intell. (T-PAMI)},
  url           = {http://rpg.ifi.uzh.ch/docs/TPAMI19_Rebecq.pdf},
  year          = 2019
}
@Article{Rebecq19cvpr,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {Events-to-Video: Bringing Modern Computer Vision to Event Cameras},
  journal       = {{IEEE} Conf. Comput. Vis. Pattern Recog. (CVPR)},
  year          = 2019
}

Install

Dependencies:

Install with Anaconda

The installation requires Anaconda3. You can create a new Anaconda environment with the required dependencies as follows (make sure to adapt the CUDA toolkit version according to your setup):

conda create -n E2VID
conda activate E2VID
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
conda install pandas
conda install -c conda-forge opencv

Run

  • Download the pretrained model:
wget "http://rpg.ifi.uzh.ch/data/E2VID/models/E2VID_lightweight.pth.tar" -O pretrained/E2VID_lightweight.pth.tar
  • Download an example file with event data:
wget "http://rpg.ifi.uzh.ch/data/E2VID/datasets/ECD_IJRR17/dynamic_6dof.zip" -O data/dynamic_6dof.zip

Before running the reconstruction, make sure the conda environment is sourced:

conda activate E2VID
  • Run reconstruction:
python run_reconstruction.py \
  -c pretrained/E2VID_lightweight.pth.tar \
  -i data/dynamic_6dof.zip \
  --auto_hdr \
  --display \
  --show_events

Parameters

Below is a description of the most important parameters:

Main parameters

  • --window_size / -N (default: None) Number of events per window. This is the parameter that has the most influence of the image reconstruction quality. If set to None, this number will be automatically computed based on the sensor size, as N = width * height * num_events_per_pixel (see description of that parameter below). Ignored if --fixed_duration is set.
  • --fixed_duration (default: False) If True, will use windows of events with a fixed duration (i.e. a fixed output frame rate).
  • --window_duration / -T (default: 33 ms) Duration of each event window, in milliseconds. The value of this parameter has strong influence on the image reconstruction quality. Its value may need to be adapted to the dynamics of the scene. Ignored if --fixed_duration is not set.
  • --Imin (default: 0.0), --Imax (default: 1.0): linear tone mapping is performed by normalizing the output image as follows: I = (I - Imin) / (Imax - Imin). If --auto_hdr is set to True, --Imin and --Imax will be automatically computed as the min (resp. max) intensity values.
  • --auto_hdr (default: False) Automatically compute --Imin and --Imax. Disabled when --color is set.
  • --color (default: False): if True, will perform color reconstruction as described in the paper. Only use this with a color event camera such as the Color DAVIS346.

Output parameters

  • --output_folder: path of the output folder. If not set, the image reconstructions will not be saved to disk.
  • --dataset_name: name of the output folder directory (default: 'reconstruction').

Display parameters

  • --display (default: False): display the video reconstruction in real-time in an OpenCV window.
  • --show_events (default: False): show the input events side-by-side with the reconstruction. If --output_folder is set, the previews will also be saved to disk in /path/to/output/folder/events.

Additional parameters

  • --num_events_per_pixel (default: 0.35): Parameter used to automatically estimate the window size based on the sensor size. The value of 0.35 was chosen to correspond to ~ 15,000 events on a 240x180 sensor such as the DAVIS240C.
  • --no-normalize (default: False): Disable event tensor normalization: this will improve speed a bit, but might degrade the image quality a bit.
  • --no-recurrent (default: False): Disable the recurrent connection (i.e. do not maintain a state). For experimenting only, the results will be flickering a lot.
  • --hot_pixels_file (default: None): Path to a file specifying the locations of hot pixels (such a file can be obtained with this tool for example). These pixels will be ignored (i.e. zeroed out in the event tensors).

Example datasets

We provide a list of example (publicly available) event datasets to get started with E2VID.

Working with ROS

Because PyTorch recommends Python 3 and ROS is only compatible with Python2, it is not straightforward to have the PyTorch reconstruction code and ROS code running in the same environment. To make things easy, the reconstruction code we provide has no dependency on ROS, and simply read events from a text file or ZIP file. We provide convenience functions to convert ROS bags (a popular format for event datasets) into event text files. In addition, we also provide scripts to convert a folder containing image reconstructions back to a rosbag (or to append image reconstructions to an existing rosbag).

Note: it is not necessary to have a sourced conda environment to run the following scripts. However, ROS needs to be installed and sourced.

rosbag -> events.txt

To extract the events from a rosbag to a zip file containing the event data:

python scripts/extract_events_from_rosbag.py /path/to/rosbag.bag \
  --output_folder=/path/to/output/folder \
  --event_topic=/dvs/events

image reconstruction folder -> rosbag

python scripts/image_folder_to_rosbag.py \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Append image_reconstruction_folder to an existing rosbag

cd scripts
python embed_reconstructed_images_in_rosbag.py \
  --rosbag_folder /path/to/rosbag/folder \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Generating a video reconstruction (with a fixed framerate)

It can be convenient to convert an image folder to a video with a fixed framerate (for example for use in a video editing tool). You can proceed as follows:

export FRAMERATE=30
python resample_reconstructions.py -i /path/to/input_folder -o /tmp/resampled -r $FRAMERATE
ffmpeg -framerate $FRAMERATE -i /tmp/resampled/frame_%010d.png video_"$FRAMERATE"Hz.mp4

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
Robin Shaun
Aerospace Engineering
Robin Shaun
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022