Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Overview

Occlusion Robust 3D face Reconstruction

Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee

Code for Occlusion Robust 3D Face Reconstruction in "Complete Face Recovery GAN: Unsupervised Joint Face Rotation and De-Occlusion from a Single-View Image (WACV 2022)"

We propose our novel two stage fine-tuning strategy for occlusion-robust 3D face reconstruction. The training method is split into two training stages due to the difficulty of initial training for extreme occlusions. We fine-tune the baseline with our newly created datasets in the first stage and with teacher-student learning method in the second stage.

Our baseline is Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set and we also referred this code. Note that we focus on alignments and colors for guidance of CFR-GAN in occluded facial images.

Requirements


Usage


Preprocessing:

Prepare your own dataset for data augmentation. The datasets used in this paper can be downloaded in follows:

Except when the dataset has facial landmarks labels, you should predict facial landmarks. We recommend using 3DDFA v2. If you want to reduce error propagation of the facial alignment networks, prepend a flag to filename. (ex) "pred"+[filename])

In order to train occlusion-robust 3D face model, occluded face image datasets are essential, but they are absent. So, we create datasets by synthesizing the hand-shape mask.

python create_train_stage1.py --img_path [your image folder] --lmk_path [your landmarks folder] --save_path [path to save]

For first training stage, prepare occluded (augmented images), ori_img (original images), landmarks (3D landmarks) folders or modify folder name in train_stage1.py.

**You must align images with align.py**

meta file format is:

[filename] left eye x left eye y right eye x right eye y nose x nose y left mouth x left mouth y ...

You can use MTCNN or RetinaFace

First Fine-tuning Stage:

Instead of skin mask, we use BiseNet, face parsing network. The codes and weights were modified and re-trained from this code.

Train occlusion-robust 3D face model

python train_stage1.py

To show logs

tensorboard --logdir=logs_stage1 --bind_all --reload_multifile True

Second Fine-tuning Stage:

  • You can download MaskedFaceNet dataset in here.
  • You can download FFHQ dataset in here.

Train

python train_stage2.py

To show logs

tensorboard --logdir=logs_stage2 --bind_all --reload_multifile True

Evaluation

python evaluation/benchmark_nme_aflw_2000.py

If you would like to evaluate your results, please refer evaluation/estimate_aflw2000.py

Owner
Yeongjoon
Yeongjoon
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022