Motion and Shape Capture from Sparse Markers

Related tags

Deep Learningmoshpp
Overview

MoSh++

This repository contains the official chumpy implementation of mocap body solver used for AMASS:

AMASS: Archive of Motion Capture as Surface Shapes
Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, Michael J. Black
Full paper | Video | Project website | Poster

Description

This repository holds the code for MoSh++, introduced in AMASS, ICCV'19. MoSh++ is the upgraded version of MoSh, Sig.Asia'2014. Given a labeled marker-based motion capture (mocap) c3d file and the correspondences of the marker labels to the locations on the body, MoSh can return model parameters for every frame of the mocap sequence. The current MoSh++ code works with the following models:

Installation

The Current repository requires Python 3.7 and chumpy; a CPU based auto-differentiation package. This package is assumed to be used along with SOMA, the mocap auto-labeling package. Please install MoSh++ inside the conda environment of SOMA. Clone the moshpp repository, and run the following from the root directory:

sudo apt install libeigen3-dev
sudo apt install libtbb-dev

pip install -r requirements.txt

cd src/moshpp/scan2mesh/mesh_distance
make

cd ../../../..
python setup.py install

Tutorials

This repository is a complementary package to SOMA, an automatic mocap solver. Please refer to the SOMA repository for tutorials and use cases.

Citation

Please cite the following paper if you use this code directly or indirectly in your research/projects:

@inproceedings{AMASS:2019,
  title={AMASS: Archive of Motion Capture as Surface Shapes},
  author={Mahmood, Naureen and Ghorbani, Nima and Troje, Nikolaus F. and Pons-Moll, Gerard and Black, Michael J.},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year={2019},
  month = {Oct},
  url = {https://amass.is.tue.mpg.de},
  month_numeric = {10}
}

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the MoSh++ data and software, (the "Data & Software"), software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of this repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

The software is compiled using CGAL sources following the license in CGAL_LICENSE.pdf

Contact

The code in this repository is developed by Nima Ghorbani while at Max-Planck Institute for Intelligent Systems, Tübingen, Germany.

If you have any questions you can contact us at [email protected].

For commercial licensing, contact [email protected]

Owner
Nima Ghorbani
Research Engineer at Max-Planck Institute for Intelligent Systems. In love with math and its applications in perceiving systems.
Nima Ghorbani
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022