Retinal vessel segmentation based on GT-UNet

Related tags

Deep LearningGT-U-Net
Overview

Retinal vessel segmentation based on GT-UNet

Introduction

This project is a retinal blood vessel segmentation code based on UNet-like Group Transformer Network (GT-UNet), including data preprocessing, model training and testing, visualization, etc.

Requirements

The main package and version of the python environment are as follows

# Name                    Version         
python                    3.7.9                    
pytorch                   1.7.0         
torchvision               0.8.0         
cudatoolkit               10.2.89       
cudnn                     7.6.5           
matplotlib                3.3.2              
numpy                     1.19.2        
opencv                    3.4.2         
pandas                    1.1.3        
pillow                    8.0.1         
scikit-learn              0.23.2          
scipy                     1.5.2           
tensorboardX              2.1        
tqdm                      4.54.1             

Usage

The project structure and intention are as follows :

VesselSeg-Pytorch			# Source code		
    ├── config.py		 	# Configuration information
    ├── lib			            # Function library
    │   ├── common.py
    │   ├── dataset.py		        # Dataset class to load training data
    │   ├── datasetV2.py		        # Dataset class to load training data with lower memory
    │   ├── extract_patches.py		# Extract training and test samples
    │   ├── help_functions.py		# 
    │   ├── __init__.py
    │   ├── logger.py 		        # To create log
    │   ├── losses
    │   ├── metrics.py		        # Evaluation metrics
    │   └── pre_processing.py		# Data preprocessing
    ├── models		        # All models are created in this folder
    │   ├── __init__.py
    │   ├── nn
    │   └── GT-UNet.py
    ├── prepare_dataset	        # Prepare the dataset (organize the image path of the dataset)
    │   ├── chasedb1.py
    │   ├── data_path_list		  # image path of dataset
    │   ├── drive.py
    │   └── stare.py
    ├── tools			     # some tools
    │   ├── ablation_plot.py
    │   ├── ablation_plot_with_detail.py
    │   ├── merge_k-flod_plot.py
    │   └── visualization
    ├── function.py			        # Creating dataloader, training and validation functions 
    ├── test.py			            # Test file
    └── train.py			          # Train file

Training model

Please confirm the configuration information in the config.py. Pay special attention to the train_data_path_list and test_data_path_list. Then, running:

python train.py

You can configure the training information in config, or modify the configuration parameters using the command line. The training results will be saved to the corresponding directory(save name) in the experiments folder.

3) Testing model

The test process also needs to specify parameters in config.py. You can also modify the parameters through the command line, running:

python test.py  

The above command loads the best_model.pth in ./experiments/GT-UNet_vessel_seg and performs a performance test on the testset, and its test results are saved in the same folder.

Owner
Kent0n
Kent0n
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021