SimplEx - Explaining Latent Representations with a Corpus of Examples

Overview

SimplEx - Explaining Latent Representations with a Corpus of Examples

image

Code Author: Jonathan Crabbé ([email protected])

This repository contains the implementation of SimplEx, a method to explain the latent representations of black-box models with the help of a corpus of examples. For more details, please read our NeurIPS 2021 paper: 'Explaining Latent Representations with a Corpus of Examples'.

Installation

  1. Clone the repository
  2. Create a new virtual environment with Python 3.8
  3. Run the following command from the repository folder:
    pip install -r requirements.txt #install requirements

When the packages are installed, SimplEx can directly be used.

Toy example

Bellow, you can find a toy demonstration where we make a corpus decomposition of test examples representations. All the relevant code can be found in the file simplex.

from explainers.simplex import Simplex
from models.base import BlackBox

# Get the model and the examples
model = BlackBox() # Model should have the BlackBox interface
corpus_inputs = get_corpus() # A tensor of corpus inputs
test_inputs = get_test() # A set of inputs to explain

# Compute the corpus and test latent representations
corpus_latents = model.latent_representation(corpus_inputs) 
test_latents = model.latent_representation(test_inputs)

# Initialize SimplEX, fit it on test examples
simplex = Simplex(corpus_examples=corpus_inputs, 
                  corpus_latent_reps=corpus_latents)
simplex.fit(test_examples=test_inputs, 
            test_latent_reps=test_latents,
            reg_factor=0)

# Get the weights of each corpus decomposition
weights = simplex.weights

We get a tensor weights that can be interpreted as follows: weights[i,c] = weight of corpus example c in the decomposition of example i.

We can get the importance of each corpus feature for the decomposition of a given example i in the following way:

# Compute the Integrated Jacobian for a particular example
i = 42
input_baseline = get_baseline() # Baseline tensor of the same shape as corpus_inputs
simplex.jacobian_projections(test_id=i, model=model,
                             input_baseline=input_baseline)

result = simplex.decompose(i)

We get a list result where each element of the list corresponds to a corpus example. This list is sorted by decreasing order of importance in the corpus decomposition. Each element of the list is a tuple structured as follows:

w_c, x_c, proj_jacobian_c = result[c]

Where w_c corresponds to the weight weights[i,c], x_c corresponds to corpus_inputs[c] and proj_jacobian is a tensor such that proj_jacobian_c[k] is the Projected Jacobian of feature k from corpus example c.

Reproducing the paper results

Reproducing MNIST Approximation Quality Experiment

  1. Run the following script for different values of CV (the results from the paper were obtained by taking all integer CV between 0 and 9)
python -m experiments.mnist -experiment "approximation_quality" -cv CV
  1. Run the following script by adding all the values of CV from the previous step
python -m experiments.results.mnist.quality.plot_results -cv_list CV1 CV2 CV3 ...
  1. The resulting plots and data are saved here.

Reproducing Prostate Cancer Approximation Quality Experiment

This experiment requires the access to the private datasets CUTRACT and SEER decribed in the paper.

  1. Copy the files cutract_internal_all.csv and seer_external_imputed_new.csv are in the folder data/Prostate Cancer
  2. Run the following script for different values of CV (the results from the paper were obtained by taking all integer CV between 0 and 9)
python -m experiments.prostate_cancer -experiment "approximation_quality" -cv CV
  1. Run the following script by adding all the values of CV from the previous step
python -m experiments.results.prostate.quality.plot_results -cv_list CV1 CV2 CV3 ...
  1. The resulting plots are saved here.

Reproducing Prostate Cancer Outlier Experiment

This experiment requires the access to the private datasets CUTRACT and SEER decribed in the paper.

  1. Make sure that the files cutract_internal_all.csv and seer_external_imputed_new.csv are in the folder data/Prostate Cancer
  2. Run the following script for different values of CV (the results from the paper were obtained by taking all integer CV between 0 and 9)
python -m experiments.prostate_cancer -experiment "outlier_detection" -cv CV
  1. Run the following script by adding all the values of CV from the previous step
python -m experiments.results.prostate.outlier.plot_results -cv_list CV1 CV2 CV3 ...
  1. The resulting plots are saved here.

Reproducing MNIST Jacobian Projection Significance Experiment

  1. Run the following script
python -m experiments.mnist -experiment "jacobian_corruption" 

2.The resulting plots and data are saved here.

Reproducing MNIST Outlier Detection Experiment

  1. Run the following script for different values of CV (the results from the paper were obtained by taking all integer CV between 0 and 9)
python -m experiments.mnist -experiment "outlier_detection" -cv CV
  1. Run the following script by adding all the values of CV from the previous step
python -m experiments.results.mnist.outlier.plot_results -cv_list CV1 CV2 CV3 ...
  1. The resulting plots and data are saved here.

Reproducing MNIST Influence Function Experiment

  1. Run the following script for different values of CV (the results from the paper were obtained by taking all integer CV between 0 and 4)
python -m experiments.mnist -experiment "influence" -cv CV
  1. Run the following script by adding all the values of CV from the previous step
python -m experiments.results.mnist.influence.plot_results -cv_list CV1 CV2 CV3 ...
  1. The resulting plots and data are saved here.

Note: some problems can appear with the package Pytorch Influence Functions. If this is the case, please change calc_influence_function.py in the following way:

343: influences.append(tmp_influence) ==> influences.append(tmp_influence.cpu())
438: influences_meta['test_sample_index_list'] = sample_list ==> #influences_meta['test_sample_index_list'] = sample_list

Reproducing AR Approximation Quality Experiment

  1. Run the following script for different values of CV (the results from the paper were obtained by taking all integer CV between 0 and 4)
python -m experiments.time_series -experiment "approximation_quality" -cv CV
  1. Run the following script by adding all the values of CV from the previous step
python -m experiments.results.ar.quality.plot_results -cv_list CV1 CV2 CV3 ...
  1. The resulting plots and data are saved here.

Reproducing AR Outlier Detection Experiment

  1. Run the following script for different values of CV (the results from the paper were obtained by taking all integer CV between 0 and 4)
python -m experiments.time_series -experiment "outlier_detection" -cv CV
  1. Run the following script by adding all the values of CV from the previous step
python -m experiments.results.ar.outlier.plot_results -cv_list CV1 CV2 CV3 ...
  1. The resulting plots and data are saved here.

Citing

If you use this code, please cite the associated paper:

Put citation here when ready
Owner
Jonathan Crabbé
I am currently doing a PhD in Explainable AI at the Department of Applied Mathematics and Theoretical Physics (DAMTP) of the University of Cambridge.
Jonathan Crabbé
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022