On Evaluation Metrics for Graph Generative Models

Overview

On Evaluation Metrics for Graph Generative Models

Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor

This is the official repository for the paper On Evaluation Metrics for Graph Generative Models (hyperlink TBD). Our evaluation metrics enable the efficient computation of the distance between two sets of graphs regardless of domain. In addition, they are more expressive than previous metrics and easily incorporate continuous node and edge features in evaluation. If you're primarily interested in using our metrics in your work, please see evaluation/ for a more lightweight setup and installation and Evaluation_examples.ipynb for examples on how to utilize our code. The remainder of this README describes how to recreate our results which introduces additional dependencies.

Table of Contents

Requirements and installation

The main requirements are:

  • Python 3.7
  • PyTorch 1.8.1
  • DGL 0.6.1
pip install -r requirements.txt

Following that, install an appropriate version of DGL 0.6.1 for your system and download the proteins and ego datasets by running ./download_datasets.sh.

Reproducing main results

The arguments of our scripts are described in config.py.

Permutation experiments

Below, examples to run the scripts to run certain experiments are shown. In general, experiments can be run as:

python main.py --permutation_type={permutation type} --dataset={dataset}\
{feature_extractor} {feature_extractor_args}

For example, to run the mixing random graphs experiment on the proteins dataset using random-GNN-based metrics for a single random seed:

python main.py --permutation_type=mixing-random --dataset=proteins\
gnn

The hyperparameters of the GNN are set to our recommendations by default, however, they are easily changed by additional flags. To run the same experiment using the degree MMD metric:

python main.py --permutation_type=mixing-random --dataset=proteins\
mmd-structure --statistic=degree

Rank correlations are automatically computed and printed at the end of each experiment, and results are stored in experiment_results/. Recreating our results requires running variations of the above commands thousands of times. To generate these commands and store them in a bash script automatically, run python create_bash_script.py.

Pretraining GNNs

To pretrain a GNN for use in our permutation experiments, run python GIN_train.py, and see GIN_train.py for tweakable hyperparameters. Alternatively, the pretrained models used in our experiments can be downloaded by running ./download_pretrained_models.sh. Once you have a pretrained model, the permutation experiments can be ran using:

python main.py --permutation_type={permutation type} --dataset={dataset}\
gnn --use_pretrained {feature_extractor_args}

Generating graphs

Some of our experiments use graphs generated by GRAN. To find instructions on training and generating graphs using GRAN, please see the official GRAN repository. Alternatively, the graphs generated by GRAN used in our experiments can be downloaded by running ./download_gran_graphs.sh.

Visualization

All code for visualizing results and creating tables is found in data_visualization.ipynb.

License

We release our code under the MIT license.

Citation

@inproceedings{thompson2022evaluation,
  title={On Evaluation Metrics for Graph Generative Models},
  author={Thompson, Rylee, and Knyazev, Boris and Ghalebi, Elahe and Kim, Jungtaek, and Taylor, Graham W},
booktitle={International Conference on Learning Representations},
  year={2022}  
}
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022