Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Overview

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons

This repository contains the code to reproduce the results of the NeurIPS 2021 submission "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons" (also available on arXiv).

Requirements

To install requirements:

pip install -r requirements.txt

Training & Evaluation

Code for FC MNIST experiments (Fig.2b and 4ac)

The code can be found in fig2b_fig4ac_mnist/src/.

Running the experiments: For example, in order to run all the experiments needed to reproduce Fig. 2b, execute:

cd fig2b_fig4ac_mnist/src/
/bin/bash 2b_jobs.sh

The results of each run, that is for example metrics, output and configurations, will be saved in fig2b_fig4ac_mnist/runs/{run_number}/.

For the experiment in Fig.4 replace 2b_jobs.sh with 4a_jobs.sh or 4c_jobs.sh respectively

The seeds chosen for these experiments were 42 69 12345 98765 38274 28374 42848 48393 83475 57381.

Code for HIGGS, MNIST and CIFAR10 with and without LE (Fig. 2cde).

The code can be found in fig2cde_higgs_mnist_cifar10.

The code configuration is integrated into the main files and only a few parameters are configured via argparse.

To run the code, check the respective submit_python_*_v100.sh file which contains examples and all run configurations for all seeds used.

The seeds chosen for these experiments were 1, 2, 3, 5, 7, 8, 13, 21, 34. (Fibonacci + lucky number 7), resulting in 9 seeds for each experiment.

Results can be found in the respective log file produced from the std out of the running code via python -u *_training.py > file.log.

Code for Dendritic Microcircuits with and without LE (Fig.3 and 5)

The code can be found in fig3fig5_dendritic_microcircuits/src/.

The experiments are configured using config files. All config files required for the production of the plotted results are in fig3fig5_dendritic_microcircuits/experiment_configs/. The naming scheme of the config files is as follows {task name}_{with LE or not}_tpres_{tpres in unit dt}.yaml where task name is bars (Fig.3) or mimic (Fig.5) and with LE or not is either le or orig.

For each run the results will be saved in fig3fig5_dendritic_microcircuits/experiment_results/{config file name}_{timestamp}/.

To run an experiment:

cd fig3fig5_dendritic_microcircuits/src/
python3 run_bars.py train ../experiment_configs/{chosen_config_file}

For the experiment in Fig.5 replace run_bars.py with run_single_mc.py

To plot the results of a run:

cd fig3fig5_dendritic_microcircuits/src/
python3 run_bars.py eval ../experiment_results/{results_dir_of_run_to_be_evaluated}

This will generate plots of the results (depending on how many variables you configured to be recorded, more or less plots can be generated) and save them in the respective results directory. Which plots are plotted is defined in run_X.py

Reproduce all data needed for Fig3:

For the results shown in Fig.3 all config files with the name bars_*.yaml need to be run for 10 different seeds (configurable in the config file). The seeds chosen for these experiments were 12345, 12346, 12347, 12348, 12349, 12350, 12351, 12352, 12353, 12354.

Contributing

📋 TODO: Pick a licence and describe how to contribute to your code repository.

Owner
Computational Neuroscience, University of Bern
Computational Neuroscience, University of Bern
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022