InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

Overview

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

Python 3.7 pytorch 1.1.0 TensorFlow 1.12.2 sklearn 0.21.2

image Figure: High-quality facial attributes editing results with InterFaceGAN.

In this repository, we propose an approach, termed as InterFaceGAN, for semantic face editing. Specifically, InterFaceGAN is capable of turning an unconditionally trained face synthesis model to controllable GAN by interpreting the very first latent space and finding the hidden semantic subspaces.

[Paper (CVPR)] [Paper (TPAMI)] [Project Page] [Demo] [Colab]

How to Use

Pick up a model, pick up a boundary, pick up a latent code, and then EDIT!

# Before running the following code, please first download
# the pre-trained ProgressiveGAN model on CelebA-HQ dataset,
# and then place it under the folder ".models/pretrain/".
LATENT_CODE_NUM=10
python edit.py \
    -m pggan_celebahq \
    -b boundaries/pggan_celebahq_smile_boundary.npy \
    -n "$LATENT_CODE_NUM" \
    -o results/pggan_celebahq_smile_editing

GAN Models Used (Prior Work)

Before going into details, we would like to first introduce the two state-of-the-art GAN models used in this work, which are ProgressiveGAN (Karras el al., ICLR 2018) and StyleGAN (Karras et al., CVPR 2019). These two models achieve high-quality face synthesis by learning unconditional GANs. For more details about these two models, please refer to the original papers, as well as the official implementations.

ProgressiveGAN: [Paper] [Code]

StyleGAN: [Paper] [Code]

Code Instruction

Generative Models

A GAN-based generative model basically maps the latent codes (commonly sampled from high-dimensional latent space, such as standart normal distribution) to photo-realistic images. Accordingly, a base class for generator, called BaseGenerator, is defined in models/base_generator.py. Basically, it should contains following member functions:

  • build(): Build a pytorch module.
  • load(): Load pre-trained weights.
  • convert_tf_model() (Optional): Convert pre-trained weights from tensorflow model.
  • sample(): Randomly sample latent codes. This function should specify what kind of distribution the latent code is subject to.
  • preprocess(): Function to preprocess the latent codes before feeding it into the generator.
  • synthesize(): Run the model to get synthesized results (or any other intermediate outputs).
  • postprocess(): Function to postprocess the outputs from generator to convert them to images.

We have already provided following models in this repository:

  • ProgressiveGAN:
    • A clone of official tensorflow implementation: models/pggan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/pggan_generator_model.py.
    • Generator class derived from BaseGenerator: models/pggan_generator.py.
    • Please download the official released model trained on CelebA-HQ dataset and place it in folder models/pretrain/.
  • StyleGAN:
    • A clone of official tensorflow implementation: models/stylegan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/stylegan_generator_model.py.
    • Generator class derived from BaseGenerator: models/stylegan_generator.py.
    • Please download the official released models trained on CelebA-HQ dataset and FF-HQ dataset and place them in folder models/pretrain/.
    • Support synthesizing images from $\mathcal{Z}$ space, $\mathcal{W}$ space, and extended $\mathcal{W}$ space (18x512).
    • Set truncation trick and noise randomization trick in models/model_settings.py. Among them, STYLEGAN_RANDOMIZE_NOISE is highly recommended to set as False. STYLEGAN_TRUNCATION_PSI = 0.7 and STYLEGAN_TRUNCATION_LAYERS = 8 are inherited from official implementation. Users can customize their own models. NOTE: These three settings will NOT affect the pre-trained weights.
  • Customized model:
    • Users can do experiments with their own models by easily deriving new class from BaseGenerator.
    • Before used, new model should be first registered in MODEL_POOL in file models/model_settings.py.

Utility Functions

We provide following utility functions in utils/manipulator.py to make InterFaceGAN much easier to use.

  • train_boundary(): This function can be used for boundary searching. It takes pre-prepared latent codes and the corresponding attributes scores as inputs, and then outputs the normal direction of the separation boundary. Basically, this goal is achieved by training a linear SVM. The returned vector can be further used for semantic face editing.
  • project_boundary(): This function can be used for conditional manipulation. It takes a primal direction and other conditional directions as inputs, and then outputs a new normalized direction. Moving latent code along this new direction will manipulate the primal attribute yet barely affect the conditioned attributes. NOTE: For now, at most two conditions are supported.
  • linear_interpolate(): This function can be used for semantic face editing. It takes a latent code and the normal direction of a particular semantic boundary as inputs, and then outputs a collection of manipulated latent codes with linear interpolation. These interpolation can be used to see how the synthesis will vary if moving the latent code along the given direction.

Tools

  • generate_data.py: This script can be used for data preparation. It will generate a collection of syntheses (images are saved for further attribute prediction) as well as save the input latent codes.

  • train_boundary.py: This script can be used for boundary searching.

  • edit.py: This script can be usd for semantic face editing.

Usage

We take ProgressiveGAN model trained on CelebA-HQ dataset as an instance.

Prepare data

NUM=10000
python generate_data.py -m pggan_celebahq -o data/pggan_celebahq -n "$NUM"

Predict Attribute Score

Get your own predictor for attribute $ATTRIBUTE_NAME, evaluate on all generated images, and save the inference results as data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy. NOTE: The save results should be with shape ($NUM, 1).

Search Semantic Boundary

python train_boundary.py \
    -o boundaries/pggan_celebahq_"$ATTRIBUTE_NAME" \
    -c data/pggan_celebahq/z.npy \
    -s data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy

Compute Conditional Boundary (Optional)

This step is optional. It depends on whether conditional manipulation is needed. Users can use function project_boundary() in file utils/manipulator.py to compute the projected direction.

Boundaries Description

We provided following boundaries in folder boundaries/. The boundaries can be more accurate if stronger attribute predictor is used.

  • ProgressiveGAN model trained on CelebA-HQ dataset:

    • Single boundary:
      • pggan_celebahq_pose_boundary.npy: Pose.
      • pggan_celebahq_smile_boundary.npy: Smile (expression).
      • pggan_celebahq_age_boundary.npy: Age.
      • pggan_celebahq_gender_boundary.npy: Gender.
      • pggan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
      • pggan_celebahq_quality_boundary.npy: Image quality.
    • Conditional boundary:
      • pggan_celebahq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • pggan_celebahq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • pggan_celebahq_age_c_gender_eyeglasses_boundary.npy: Age (conditioned on gender and eyeglasses).
      • pggan_celebahq_gender_c_age_boundary.npy: Gender (conditioned on age).
      • pggan_celebahq_gender_c_eyeglasses_boundary.npy: Gender (conditioned on eyeglasses).
      • pggan_celebahq_gender_c_age_eyeglasses_boundary.npy: Gender (conditioned on age and eyeglasses).
      • pggan_celebahq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • pggan_celebahq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
      • pggan_celebahq_eyeglasses_c_age_gender_boundary.npy: Eyeglasses (conditioned on age and gender).
  • StyleGAN model trained on CelebA-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_celebahq_pose_boundary.npy: Pose.
      • stylegan_celebahq_smile_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_boundary.npy: Age.
      • stylegan_celebahq_gender_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_celebahq_pose_w_boundary.npy: Pose.
      • stylegan_celebahq_smile_w_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_w_boundary.npy: Age.
      • stylegan_celebahq_gender_w_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_w_boundary.npy: Eyeglasses.
  • StyleGAN model trained on FF-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_pose_boundary.npy: Pose.
      • stylegan_ffhq_smile_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_boundary.npy: Age.
      • stylegan_ffhq_gender_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_boundary.npy: Eyeglasses.
    • Conditional boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • stylegan_ffhq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • stylegan_ffhq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • stylegan_ffhq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_ffhq_pose_w_boundary.npy: Pose.
      • stylegan_ffhq_smile_w_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_w_boundary.npy: Age.
      • stylegan_ffhq_gender_w_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_w_boundary.npy: Eyeglasses.

BibTeX

@inproceedings{shen2020interpreting,
  title     = {Interpreting the Latent Space of GANs for Semantic Face Editing},
  author    = {Shen, Yujun and Gu, Jinjin and Tang, Xiaoou and Zhou, Bolei},
  booktitle = {CVPR},
  year      = {2020}
}
@article{shen2020interfacegan,
  title   = {InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs},
  author  = {Shen, Yujun and Yang, Ceyuan and Tang, Xiaoou and Zhou, Bolei},
  journal = {TPAMI},
  year    = {2020}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022