FS-Mol: A Few-Shot Learning Dataset of Molecules

Related tags

Deep LearningFS-Mol
Overview

FS-Mol: A Few-Shot Learning Dataset of Molecules

This repository contains data and code for FS-Mol: A Few-Shot Learning Dataset of Molecules.

Installation

  1. Clone or download this repository

  2. Install dependencies

    cd FS-Mol
    
    conda env create -f environment.yml
    conda activate fsmol
    

The code for the Molecule Attention Transformer baseline is added as a submodule of this repository. Hence, in order to be able to run MAT, one has to clone our repository via git clone --recurse-submodules. Alternatively, one can first clone our repository normally, and then set up submodules via git submodule update --init. If the MAT submodule is not set up, all the other parts of our repository should continue to work.

Data

The dataset is available as a download, FS-Mol Data, split into train, valid and test folders. Additionally, we specify which tasks are to be used with the file datasets/fsmol-0.1.json, a default list of tasks for each data fold. We note that the complete dataset contains many more tasks. Should use of all possible training tasks available be desired, the training script argument --task_list_file datasets/entire_train_set.json should be used. The task lists will be used to version FS-Mol in future iterations as more data becomes available via ChEMBL.

Tasks are stored as individual compressed JSONLines files, with each line corresponding to the information to a single datapoint for the task. Each datapoint is stored as a JSON dictionary, following a fixed structure:

{
    "SMILES": "SMILES_STRING",
    "Property": "ACTIVITY BOOL LABEL",
    "Assay_ID": "CHEMBL ID",
    "RegressionProperty": "ACTIVITY VALUE",
    "LogRegressionProperty": "LOG ACTIVITY VALUE",
    "Relation": "ASSUMED RELATION OF MEASURED VALUE TO TRUE VALUE",
    "AssayType": "TYPE OF ASSAY",
    "fingerprints": [...],
    "descriptors": [...],
    "graph": {
        "adjacency_lists": [
           [... SINGLE BONDS AS PAIRS ...],
           [... DOUBLE BONDS AS PAIRS ...],
           [... TRIPLE BONDS AS PAIRS ...]
        ],
        "node_types": [...ATOM TYPES...],
        "node_features": [...NODE FEATURES...],
    }
}

FSMolDataset

The fs_mol.data.FSMolDataset class provides programmatic access in Python to the train/valid/test tasks of the few-shot dataset. An instance is created from the data directory by FSMolDataset.from_directory(/path/to/dataset). More details and examples of how to use FSMolDataset are available in fs_mol/notebooks/dataset.ipynb.

Evaluating a new Model

We have provided an implementation of the FS-Mol evaluation methodology in fs_mol.utils.eval_utils.eval_model(). This is a framework-agnostic python method, and we demonstrate how to use it for evaluating a new model in detail in notebooks/evaluation.ipynb.

Note that our baseline test scripts (fs_mol/baseline_test.py, fs_mol/maml_test.py, fs_mol/mat_test, fs_mol/multitask_test.py and fs_mol/protonet_test.py) use this method as well and can serve as examples on how to integrate per-task fine-tuning in TensorFlow (maml_test.py), fine-tuning in PyTorch (mat_test.py) and single-task training for scikit-learn models (baseline_test.py). These scripts also support the --task_list_file parameter to choose different sets of test tasks, as required.

Baseline Model Implementations

We provide implementations for three key few-shot learning methods: Multitask learning, Model-Agnostic Meta-Learning, and Prototypical Networks, as well as evaluation on the Single-Task baselines and the Molecule Attention Transformer (MAT) paper, code.

All results and associated plots are found in the baselines/ directory.

These baseline methods can be run on the FS-Mol dataset as follows:

kNNs and Random Forests -- Single Task Baselines

Our kNN and RF baselines are obtained by permitting grid-search over a industry-standard parameter set, detailed in the script baseline_test.py.

The baseline single-task evaluation can be run as follows, with a choice of kNN or randomForest model:

python fs_mol/baseline_test.py /path/to/data --model {kNN, randomForest}

Molecule Attention Transformer

The Molecule Attention Transformer (MAT) paper, code.

The Molecule Attention Transformer can be evaluated as:

python fs_mol/mat_test.py /path/to/pretrained-mat /path/to/data

GNN-MAML pre-training and evaluation

The GNN-MAML model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $8$-layer GNN with node-embedding dimension $128$. The GNN uses "Edge-MLP" message passing. The model was trained with a support set size of $16$ according to the MAML procedure Finn 2017. The hyperparameters used in the model checkpoint are default settings of maml_train.py.

The current defaults were used to train the final versions of GNN-MAML available here.

python fs_mol/maml_train.py /path/to/data 

Evaluation is run as:

python fs_mol/maml_test.py /path/to/data --trained_model /path/to/gnn-maml-checkpoint

GNN-MT pre-training and evaluation

The GNN-MT model consists of a GNN operating on the molecular graph representations of the dataset. The model consists of a $10$-layer GNN with node-embedding dimension $128$. The model uses principal neighbourhood aggregation (PNA) message passing. The hyperparameters used in the model checkpoint are default settings of multitask_train.py. This method has similarities to the approach taken for the task-only training contained within Hu 2019

python fs_mol/multitask_train.py /path/to/data 

Evaluation is run as:

python fs_mol/multitask_test.py /path/to/gnn-mt-checkpoint /path/to/data

Prototypical Networks (PN) pre-training and evaluation

The prototypical networks method Snell 2017 extracts representations of support set datapoints and uses these to classify positive and negative examples. We here used the Mahalonobis distance as a metric for query point distance to class prototypes.

python fs_mol/protonet_train.py /path/to/data 

Evaluation is run as:

python fs_mol/protonet_test.py /path/to/pn-checkpoint /path/to/data

Available Model Checkpoints

We provide pre-trained models for GNN-MAML, GNN-MT and PN, these are downloadable from the links to figshare.

Model Name Description Checkpoint File
GNN-MAML Support set size 16. 8-layer GNN. Edge MLP message passing. MAML-Support16_best_validation.pkl
GNN-MT 10-layer GNN. PNA message passing multitask_best_model.pt
PN 10-layer GGN, PNA message passing. ECFP+GNN, Mahalonobis distance metric PN-Support64_best_validation.pt

Specifying, Training and Evaluating New Model Implementations

Flexible definition of few-shot models and single task models is defined as demonstrated in the range of train and test scripts in fs_mol.

We give a detailed example of how to use the abstract class AbstractTorchFSMolModel in notebooks/integrating_torch_models.ipynb to integrate a new general PyTorch model, and note that the evaluation procedure described below is demonstrated on sklearn models in fs_mol/baseline_test.py and on a Tensorflow-based GNN model in fs_mol/maml_test.py.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023