End-to-end machine learning project for rices detection

Overview

Basmatinet

Welcome to this project folks !

Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learning and MLOPS. So if you want to learn to train and deploy a simple model to recognize rice type basing on a photo, then you are at the right place.

0- Project's Roadmap

This project will consist to:

  • Train a Deep Learning model with Pytorch.
  • Transfert learning from Efficient Net.
  • Data augmentation with Albumentation.
  • Save trained model with early stopping.
  • Track the training with MLFLOW.
  • Serve the model with a Rest Api built with Flask.
  • Encode data in base64 client side before sending to the api server.
  • Package the application in microservice's fashion with Docker.
  • Yaml for configurations file.
  • Passing arguments anywhere it is possible.
  • Orchestrate the prediction service with Kubernetes (k8s) on Google Cloud Platform.
  • Pre-commit git hook.
  • Logging during training.
  • CI with github actions.
  • CD with terraform to build environment on Google Cloud Platform.
  • Save images and predictions in InfluxDB database.
  • Create K8s service endpoint for external InfluxDB database.
  • Create K8s secret for external InfluxDB database.
  • Unitary tests with Pytest (Fixtures and Mocks).

1- Install project's dependencies and packages

This project was developped in conda environment but you can use any python virtual environment but you should have installed some packages that are in basmatinet/requirements.txt

Python version: 3.8.12

# Move into the project root
$ cd basmatinet

# 1st alternative: using pip
$ pip install -r requirements.txt
# 2nd alternative
$ conda install --file requirements.txt

2- Train a basmatinet model

$ python src/train.py "/path/to/rice_image_dataset/" \
                     --batch-size 16 --nb-epochs 200 \
                     --workers 8 --early-stopping 5  \
                     --percentage 0.1 --cuda

3- Dockerize the model and push the Docker Image to Google Container Registry

1st step: Let's build a docker images

# Move into the app directory
$ cd basmatinet/app

# Build the machine learning serving app image
$ docker build -t basmatinet .

# Run a model serving app container outside of kubernetes (optionnal)
$ docker run -d -p 5000:5000 basmatinet

# Try an inference to test the endpoint
$ python frontend.py --filename "../images/arborio.jpg" --host-ip "0.0.0.0"

2nd step: Let's push the docker image into a Google Container Registry. But you should create a google cloud project to have PROJECT-ID and in this case you HOSTNAME will be "gcr.io" and you should enable GCR Api on google cloud platform.

# Re-tag the image and include the container in the image tag
$ docker tag basmatinet [HOSTNAME]/[PROJECT-ID]/basmatinet

# Push to container registry
$ docker push [HOSTNAME]/[PROJECT-ID]/basmatinet

4- Create a kubernetes cluster

First of all you should enable GKE Api on google cloud platform. And go to the cloud shell or stay on your host if you have gcloud binary already installed.

# Start a cluster
$ gcloud container clusters create k8s-gke-cluster --num-nodes 3 --machine-type g1-small --zone europe-west1-b

# Connect to the cluster
$ gcloud container clusters get-credentials k8s-gke-cluster --zone us-west1-b --project [PROJECT_ID]

4- Deploy the application on Kubernetes (Google Kubernetes Engine)

Create the deployement and the service on a kubernetes cluster.

# In the app directory
$ cd basmatinet/app
# Create the namespace
$ kubectl apply -f k8s/namespace.yaml
# Create the deployment
$ kubectl apply -f k8s/basmatinet-deployment.yaml --namespace=mlops-test
# Create the service
$ kubectl apply -f k8s/basmatinet-service.yaml --namespace=mlops-test

# Check that everything is alright with the following command and look for basmatinet-app in the output
$ kubectl get services

# The output should look like
NAME             TYPE           CLUSTER-IP    EXTERNAL-IP     PORT(S)          AGE
basmatinet-app   LoadBalancer   xx.xx.xx.xx   xx.xx.xx.xx   5000:xxxx/TCP      2m3s

Take the EXTERNAL-IP and test your service with the file basmatinet/app/frontend.py . Then you can cook your jollof with some basmatinet!!!

You might also like...
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

 Neural Dynamic Policies for End-to-End Sensorimotor Learning
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

 WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

Releases(v0.2.0)
  • v0.2.0(May 26, 2022)

    We add image building annd pushing to Google Container Registry. Moreover we add a last step to deploy on a Google Kubernetes Engine cluster. And this the first official release.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 24, 2022)

Owner
Béranger
Machine Learning Engineer with high interest for Africa.
Béranger
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022