Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Overview

Gated-Attention Architectures for Task-Oriented Language Grounding

This is a PyTorch implementation of the AAAI-18 paper:

Gated-Attention Architectures for Task-Oriented Language Grounding
Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj Rajagopal, Ruslan Salakhutdinov
Carnegie Mellon University

Project Website: https://sites.google.com/view/gated-attention

example

This repository contains:

  • Code for training an A3C-LSTM agent using Gated-Attention
  • Code for Doom-based language grounding environment

Dependencies

(We recommend using Anaconda)

Usage

Using the Environment

For running a random agent:

python env_test.py

To play in the environment:

python env_test.py --interactive 1

To change the difficulty of the environment (easy/medium/hard):

python env_test.py -d easy

Training Gated-Attention A3C-LSTM agent

For training a A3C-LSTM agent with 32 threads:

python a3c_main.py --num-processes 32 --evaluate 0

The code will save the best model at ./saved/model_best.

To the test the pre-trained model for Multitask Generalization:

python a3c_main.py --evaluate 1 --load saved/pretrained_model

To the test the pre-trained model for Zero-shot Task Generalization:

python a3c_main.py --evaluate 2 --load saved/pretrained_model

To the visualize the model while testing add '--visualize 1':

python a3c_main.py --evaluate 2 --load saved/pretrained_model --visualize 1

To test the trained model, use --load saved/model_best in the above commands.

All arguments for a3c_main.py:

  -h, --help            show this help message and exit
  -l MAX_EPISODE_LENGTH, --max-episode-length MAX_EPISODE_LENGTH
                        maximum length of an episode (default: 30)
  -d DIFFICULTY, --difficulty DIFFICULTY
                        Difficulty of the environment, "easy", "medium" or
                        "hard" (default: hard)
  --living-reward LIVING_REWARD
                        Default reward at each time step (default: 0, change
                        to -0.005 to encourage shorter paths)
  --frame-width FRAME_WIDTH
                        Frame width (default: 300)
  --frame-height FRAME_HEIGHT
                        Frame height (default: 168)
  -v VISUALIZE, --visualize VISUALIZE
                        Visualize the envrionment (default: 0, use 0 for
                        faster training)
  --sleep SLEEP         Sleep between frames for better visualization
                        (default: 0)
  --scenario-path SCENARIO_PATH
                        Doom scenario file to load (default: maps/room.wad)
  --interactive INTERACTIVE
                        Interactive mode enables human to play (default: 0)
  --all-instr-file ALL_INSTR_FILE
                        All instructions file (default:
                        data/instructions_all.json)
  --train-instr-file TRAIN_INSTR_FILE
                        Train instructions file (default:
                        data/instructions_train.json)
  --test-instr-file TEST_INSTR_FILE
                        Test instructions file (default:
                        data/instructions_test.json)
  --object-size-file OBJECT_SIZE_FILE
                        Object size file (default: data/object_sizes.txt)
  --lr LR               learning rate (default: 0.001)
  --gamma G             discount factor for rewards (default: 0.99)
  --tau T               parameter for GAE (default: 1.00)
  --seed S              random seed (default: 1)
  -n N, --num-processes N
                        how many training processes to use (default: 4)
  --num-steps NS        number of forward steps in A3C (default: 20)
  --load LOAD           model path to load, 0 to not reload (default: 0)
  -e EVALUATE, --evaluate EVALUATE
                        0:Train, 1:Evaluate MultiTask Generalization
                        2:Evaluate Zero-shot Generalization (default: 0)
  --dump-location DUMP_LOCATION
                        path to dump models and log (default: ./saved/)

Demostration videos:

Multitask Generalization video: https://www.youtube.com/watch?v=YJG8fwkv7gA

Zero-shot Task Generalization video: https://www.youtube.com/watch?v=JziCKsLrudE

Different stages of training: https://www.youtube.com/watch?v=o_G6was03N0

Cite as

Chaplot, D.S., Sathyendra, K.M., Pasumarthi, R.K., Rajagopal, D. and Salakhutdinov, R., 2017. Gated-Attention Architectures for Task-Oriented Language Grounding. arXiv preprint arXiv:1706.07230. (PDF)

Bibtex:

@article{chaplot2017gated,
  title={Gated-Attention Architectures for Task-Oriented Language Grounding},
  author={Chaplot, Devendra Singh and Sathyendra, Kanthashree Mysore and Pasumarthi, Rama Kumar and Rajagopal, Dheeraj and Salakhutdinov, Ruslan},
  journal={arXiv preprint arXiv:1706.07230},
  year={2017}
}

Acknowledgements

This repository uses ViZDoom API (https://github.com/mwydmuch/ViZDoom) and parts of the code from the API. The implementation of A3C is borrowed from https://github.com/ikostrikov/pytorch-a3c. The poisson-disc code is borrowed from https://github.com/IHautaI/poisson-disc.

Owner
Devendra Chaplot
Ph.D. student in Machine Learning Dept., School of Computer Science, CMU.
Devendra Chaplot
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022