Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

Overview

CenterGroup

This the official implementation of our ICCV 2021 paper

The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation,
Method Visualization Guillem Brasó, Nikita Kister, Laura Leal-Taixé
We introduce CenterGroup, an attention-based framework to estimate human poses from a set of identity-agnostic keypoints and person center predictions in an image. Our approach uses a transformer to obtain context-aware embeddings for all detected keypoints and centers and then applies multi-head attention to directly group joints into their corresponding person centers. While most bottom-up methods rely on non-learnable clustering at inference, CenterGroup uses a fully differentiable attention mechanism that we train end-to-end together with our keypoint detector. As a result, our method obtains state-of-the-art performance with up to 2.5x faster inference time than competing bottom-up methods.

@article{Braso_2021_ICCV,
    author    = {Bras\'o, Guillem and Kister, Nikita and Leal-Taix\'e, Laura},
    title     = {The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation},
    journal = {ICCV},
    year      = {2021}
}

Main Results

With the code contained in this repo, you should be able to reproduce the following results.

Results on COCO val2017

Method Detector Multi-Scale Test Input size AP AP.5 AP .75 AP (M) AP (L)
CenterGroup HigherHRNet-w32 512 69.0 87.7 74.4 59.9 75.3
CenterGroup HigherHRNet-w48 640 71.0 88.7 76.5 63.1 75.2
CenterGroup HigherHRNet-w32 512 71.9 89.0 78.0 63.7 77.4
CenterGroup HigherHRNet-w48 640 73.3 89.7 79.2 66.4 76.7

Results on COCO test2017

Method Detector Multi-Scale Test Input size AP AP .5 AP .75 AP (M) AP (L)
CenterGroup HigherHRNet-w32 512 67.6 88.6 73.6 62.0 75.6
CenterGroup HigherHRNet-w48 640 69.5 89.7 76.0 65.0 76.2
CenterGroup HigherHRNet-w32 512 70.3 90.0 76.9 65.4 77.5
CenterGroup HigherHRNet-w48 640 71.4 90.5 78.1 67.2 77.5

Results on CrowdPose test

Method Detector Multi-Scale Test Input size AP AP .5 AP .75 AP (E) AP (M) AP (H)
CenterGroup HigherHRNet-w48 640 67.6 87.6 72.7 74.2 68.1 61.1
CenterGroup HigherHRNet-w48 640 70.3 89.1 75.7 77.3 70.8 63.2

Installation

Please see docs/INSTALL.md

Model Zoo

Please see docs/MODEL_ZOO.md

Evaluation

To evaluate a model you have to specify its configuration file, its checkpoint, and the number of GPUs you want to use. All of our configurations and checkpoints are available here) For example, to run CenterGroup with a HigherHRNet32 detector and a single GPU you can run the following:

NUM_GPUS=1
./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234

If you want to use multi-scale testing, please add the --multi-scale flag, e.g.:

./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234 --multi-scale

You can also modify any other config entry with the --cfg-options entry. For example, to disable flip-testing, which is used by default, you can run:

./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234 --cfg-options model.test_cfg.flip_test=False

You may need to modify the checkpoint's path, depending on where you downloaded it, and the entry data_root in the config file, depending on where you stored your data.

Training HigherHRNet with Centers

TODO

Training CenterGroup

TODO

Demo

TODO

Acknowledgements

Our code is based on mmpose, which reimplemented HigherHRNet's work. We thank the authors of these codebases for their great work!

Owner
Dynamic Vision and Learning Group
Dynamic Vision and Learning Group
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023