Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Overview

Projeto-Final-Salario-dos-Brasileiros

Esquema do Projeto

Descrição

Todas as equipes deverão entregar as mesmas especificações, de acordo com o seu respectivo tema. Vocês deverão aplicar os conceitos vistos durante o curso para tratar, organizar e modelar os dados de 2 datasets escolhidos por vocês seguindo o tema de sua equipe. Obrigatoriamente deverá conter as tecnologias Google Cloud Platform(Cloud Storage), Python, Pandas, PySpark, SparkSQL, Apache Beam*, Data Studio, Big Query.

Apresentação

  • A apresentação do trabalho se dará da seguinte maneira:
  • Cada grupo deverá ser totalmente responsável pela forma pela qual vai interpretar o dataset, apresentando suposições e conclusões dos dados. Todas essas situações devem ser explicadas.
  • Deverá iniciar pela apresentação do dataset, informando de qual local foi baixado o dataset e quais as principais informações sobre o mesmo.
  • Deverá apresentar as funções e ferramentas utilizadas no código.
  • Explicar o porquê do dataset escolhido.
  • Todos os componentes deverão se apresentar.
  • Deverá ser usado termos técnicos, evitando o uso de gírias ou expressões coloquiais e/ou culturais.
  • Cada grupo terá 60 minutos para se apresentar.
  • A ordem da apresentação será comunicada pelos professores próximo à data de apresentação.

Principais Habilidades a serem avaliadas

  • Oralidade e comunicação em público.
  • Capacidade de argumentação
  • Habilidade de codificação em Python
  • Habilidade de interpretação e análise de dados.
  • Capacidade de implementação de códigos utilizando as bibliotecas Pandas e PySpark.
  • Capacidade de implementação de consultas utilizando a linguagem SQL.
  • Capacidade Analítica e Interpretativa.

REQUISITOS OBRIGATÓRIOS

  • Obrigatoriamente os datasets devem ter formatos diferentes (CSV / Json / Parquet / Sql / NoSql) e 1 deles obrigatoriamente tem que ser em CSV.
  • Operações com Pandas (limpezas , transformações e normalizações)
  • Operações usando PySpark com a descrição de cada uma das operações.
  • Operações utilizando o SparkSQL com a descrição de cada umas das operações.
  • Os datasets utilizados podem ser em lingua estrangeira , mas devem ao final terem seus dados/colunas exibidos na lingua PT-BR
  • os datasets devem ser salvos e operados em armazenamento cloud obrigatoriamente dentro da plataforma GCP (não pode ser usado Google drive ou armazenamento alheio ao google)
  • os dados tratados devem ser armazenados também em GCP, mas obrigatoriamente em um datalake(Gstorage ) , DW(BigQuery) ou em ambos.
  • Deve ser feito análises dentro do Big Query utilizando a linguagem padrão SQL com a descrição das consultas feitas.
  • Deve ser criado no datastudio um dash board simples para exibição gráfica dos dados tratados trazendo insights importantes
  • E deve ser demonstrado em um workflow simples (gráfico) as etapas de ETL.

REQUISITOS DESEJÁVEIS

  • Implementar captura e ingestão de dados por meio de uma PIPELINE com modelo criado em apache beam usando o dataflow para o work
  • Criar plotagens usando pandas para alguns insights durante o processo de Transformação
  • Por meio de uma PIPELINE fazer o carregamento dos dados normalizados diretamente para um DW ou DataLake ou ambos
  • Montar um relatório completo com os insights que justificam todo o processo de ETL utilizado

Diagrama da arquitetura do pipeline de dados (ELT)

1639062920753

Dashboards

image

Acesso ao Dashboard

https://datastudio.google.com/reporting/a1848536-d356-4c2b-b712-5d6777962fcb/page/p_wewachuqpc?authuser=1

Owner
Débora Mendes de Azevedo
Débora Mendes de Azevedo
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
Data cleaning tools for Business analysis

Datacleaning datacleaning tools for Business analysis This program is made for Vicky's work. You can use it, too. 数据清洗 该数据清洗工具是为了商业分析 这个程序是为了Vicky的工作而

Lin Jian 3 Nov 16, 2021
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.

RPA Challenge in Python Projeto para realizar o RPA Challenge (www.rpachallenge.com), utilizando Python. O objetivo deste desafio é criar um fluxo de

Henrique A. Lourenço 1 Apr 12, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022