Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Related tags

Data Analysistuplex
Overview

Tuplex: Blazing Fast Python Data Science

Build Status License Supported python versions Gitter PyPi Downloads

Website Documentation

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set. Under the hood, Tuplex is based on data-driven compilation and dual-mode processing, two key techniques that make it possible for Tuplex to provide speed comparable to a pipeline written in hand-optimized C++.

You can join the discussion on Tuplex on our Gitter community or read up more on the background of Tuplex in our SIGMOD'21 paper.

Contributions welcome!

Contents

Installation

To install Tuplex, you can use a PyPi package for Linux, or a Docker container for MacOS which will launch a jupyter notebook with Tuplex preinstalled.

Docker

docker run -p 8888:8888 tuplex/tuplex

PyPI

pip install tuplex

Building

Tuplex is available for MacOS and Linux. The current version has been tested under MacOS 10.13-10.15 and Ubuntu 18.04 and 20.04 LTS. To install Tuplex, simply install the dependencies first and then build the package.

MacOS build from source

To build Tuplex, you need several other packages first which can be easily installed via brew.

brew install [email protected] boost boost-python3 aws-sdk-cpp pcre2 antlr4-cpp-runtime googletest gflags yaml-cpp celero
python3 -m pip cloudpickle numpy
python3 setup.py install

Ubuntu build from source

To faciliate installing the dependencies for Ubuntu, we do provide two scripts (scripts/ubuntu1804/install_reqs.sh for Ubuntu 18.04, or scripts/ubuntu2004/install_reqs.sh for Ubuntu 20.04). To create an up to date version of Tuplex, simply run

./scripts/ubuntu1804/install_reqs.sh
python3 -m pip cloudpickle numpy
python3 setup.py install

Customizing the build

Besides building a pip package, cmake can be also directly invoked. To compile the package via cmake

mkdir build
cd build
cmake ..
make -j$(nproc)

The python package corresponding to Tuplex can be then found in build/dist/python with C++ test executables based on googletest in build/dist/bin.

To customize the cmake build, the following options are available to be passed via -D:

option values description
CMAKE_BUILD_TYPE Release (default), Debug, RelWithDebInfo, tsan, asan, ubsan select compile mode. Tsan/Asan/Ubsan correspond to Google Sanitizers.
BUILD_WITH_AWS ON (default), OFF build with AWS SDK or not. On Ubuntu this will build the Lambda executor.
GENERATE_PDFS ON, OFF (default) output in Debug mode PDF files if graphviz is installed (e.g., brew install graphviz) for ASTs of UDFs, query plans, ...
PYTHON3_VERSION 3.6, ... when trying to select a python3 version to build against, use this by specifying major.minor. To specify the python executable, use the options provided by cmake.
LLVM_ROOT_DIR e.g. /usr/lib/llvm-9 specify which LLVM version to use
BOOST_DIR e.g. /opt/boost specify which Boost version to use. Note that the python component of boost has to be built against the python version used to build Tuplex

For example, to create a debug build which outputs PDFs use the following snippet:

cmake -DCMAKE_BUILD_TYPE=Debug -DGENERATE_PDFS=ON ..

Example

Tuplex can be used in python interactive mode, a jupyter notebook or by copying the below code to a file. To try it out, run the following example:

from tuplex import *
c = Context()
res = c.parallelize([1, 2, None, 4]).map(lambda x: (x, x * x)).collect()
# this prints [(1, 1), (2, 4), (4, 16)]
print(res)

More examples can be found here.

License

Tuplex is available under Apache 2.0 License, to cite the paper use:

@inproceedings{10.1145/3448016.3457244,
author = {Spiegelberg, Leonhard and Yesantharao, Rahul and Schwarzkopf, Malte and Kraska, Tim},
title = {Tuplex: Data Science in Python at Native Code Speed},
year = {2021},
isbn = {9781450383431},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3448016.3457244},
doi = {10.1145/3448016.3457244},
booktitle = {Proceedings of the 2021 International Conference on Management of Data},
pages = {1718–1731},
numpages = {14},
location = {Virtual Event, China},
series = {SIGMOD/PODS '21}
}

(c) 2017-2021 Tuplex contributors

Owner
Tuplex
Python Data Science at Native Code Speed
Tuplex
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are st

32 Dec 20, 2022
Methylation/modified base calling separated from basecalling.

Remora Methylation/modified base calling separated from basecalling. Remora primarily provides an API to call modified bases for basecaller programs s

Oxford Nanopore Technologies 72 Jan 05, 2023
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
Analysiscsv.py for extracting analysis and exporting as CSV

wcc_analysis Lichess page documentation: https://lichess.org/page/world-championships Each WCC has a study, studies are fetched using: https://lichess

32 Apr 25, 2022
Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

xraypy 95 Dec 13, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022