Collections of pydantic models

Overview

pydantic-collections

Build Status Coverage Status

The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models (and any other types supported by pydantic).

Requirements

  • Python >= 3.7
  • pydantic >= 1.8.2

Installation

pip install pydantic-collections

Usage

Basic usage

from datetime import datetime

from pydantic import BaseModel
from pydantic_collections import BaseCollectionModel


class User(BaseModel):
    id: int
    name: str
    birth_date: datetime


class UserCollection(BaseCollectionModel[User]):
    pass


 user_data = [
        {'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'},
        {'id': 2, 'name': 'Balaganov', 'birth_date': '2020-04-01T12:59:59'},
    ]

users = UserCollection(user_data)
print(users)
#> UserCollection([User(id=1, name='Bender', birth_date=datetime.datetime(2010, 4, 1, 12, 59, 59)), User(id=2, name='Balaganov', birth_date=datetime.datetime(2020, 4, 1, 12, 59, 59))])
print(users.dict())
#> [{'id': 1, 'name': 'Bender', 'birth_date': datetime.datetime(2010, 4, 1, 12, 59, 59)}, {'id': 2, 'name': 'Balaganov', 'birth_date': datetime.datetime(2020, 4, 1, 12, 59, 59)}]
print(users.json())
#> [{"id": 1, "name": "Bender", "birth_date": "2010-04-01T12:59:59"}, {"id": 2, "name": "Balaganov", "birth_date": "2020-04-01T12:59:59"}]

Strict assignment validation

By default BaseCollectionModel has a strict assignment check

...
users = UserCollection()
users.append(User(id=1, name='Bender', birth_date=datetime.utcnow()))  # OK
users.append({'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'})
#> pydantic.error_wrappers.ValidationError: 1 validation error for UserCollection
#> __root__ -> 2
#>  instance of User expected (type=type_error.arbitrary_type; expected_arbitrary_type=User)

This behavior can be changed via Model Config

...
class UserCollection(BaseCollectionModel[User]):
    class Config:
        validate_assignment_strict = False
        
users = UserCollection()
users.append({'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'})  # OK
assert users[0].__class__ is User
assert users[0].id == 1

Using as a model field

BaseCollectionModel is a subclass of BaseModel, so you can use it as a model field

...
class UserContainer(BaseModel):
    users: UserCollection = []
        
data = {
    'users': [
        {'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'},
        {'id': 2, 'name': 'Balaganov', 'birth_date': '2020-04-01T12:59:59'},
    ]
}

container = UserContainer(**data)
container.users.append(User(...))
...
You might also like...
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models, such as: T-test: verify if mean of distribution i

A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

 pydantic-i18n is an extension to support an i18n for the pydantic error messages.
pydantic-i18n is an extension to support an i18n for the pydantic error messages.

pydantic-i18n is an extension to support an i18n for the pydantic error messages

Python collections that are backended by sqlite3 DB and are compatible with the built-in collections

sqlitecollections Python collections that are backended by sqlite3 DB and are compatible with the built-in collections Installation $ pip install git+

Seamlessly integrate pydantic models in your Sphinx documentation.
Seamlessly integrate pydantic models in your Sphinx documentation.

Seamlessly integrate pydantic models in your Sphinx documentation.

🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.
🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Streamlit Pydantic Auto-generate Streamlit UI elements from Pydantic models. Getting Started • Documentation • Support • Report a Bug • Contribution •

Hyperlinks for pydantic models

Hyperlinks for pydantic models In a typical web application relationships between resources are modeled by primary and foreign keys in a database (int

Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

PyTorch implementation of
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

A curated list of awesome things related to Pydantic! 🌪️

Awesome Pydantic A curated list of awesome things related to Pydantic. These packages have not been vetted or approved by the pydantic team. Feel free

Pydantic model support for Django ORM

Pydantic model support for Django ORM

flask extension for integration with the awesome pydantic package

flask extension for integration with the awesome pydantic package

Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints.
Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints.

Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints. check parameters and generate API documents automatically. Flask Sugar是一个基于flask,pyddantic,类型注解的API框架, 可以检查参数并自动生成API文档

Pydantic-ish YAML configuration management.
Pydantic-ish YAML configuration management.

Pydantic-ish YAML configuration management.

(A)sync client for sms.ru with pydantic responses

🚧 aioSMSru Send SMS Check SMS status Get SMS cost Get balance Get limit Get free limit Get my senders Check login/password Add to stoplist Remove fro

Comments
  • Bug dict() method: ignore or raised exception when using dict function attribute (ex. include, exclude, etc.)

    Bug dict() method: ignore or raised exception when using dict function attribute (ex. include, exclude, etc.)

    Hi there, I tried to use the method dict but i got an error: KeyError(__root__) Here an example:

    1. Model structure:
    
    from datetime import datetime, time
    from typing import Optional, Union
    from pydantic import Field, validator, BaseModel
    from pydantic_collections import BaseCollectionModel
    
    class OpeningTime(BaseModel):
        weekday: int = Field(..., alias="weekday")
        day: Optional[str] = Field(alias="day")  # NB: keep it after number_weekday attribute
        from_time: Optional[time] = Field(alias="fromTime")
        to_time: Optional[time] = Field(alias="toTime")
    
        @validator("day", pre=True)
        def generate_weekday(cls, weekday: str, values) -> str:
            if weekday is None or len(weekday) == 0:
                return WEEKDAYS[str(values["weekday"])]
            return weekday
    
    
    
    class OpeningTimes(BaseCollectionModel[OpeningTime]):
        pass
    
    
    class PaymentMethod(BaseModel):
        type: str = Field(..., alias="type")
        card_type: str = Field(..., alias="cardType")
    
    
    class PaymentMethods(BaseCollectionModel[PaymentMethod]):
        pass
    
    
    class FuelType(BaseModel):
        type: str = Field(..., alias="Fuel")
    
    
    class FuelTypes(BaseCollectionModel[FuelType]):
        pass
    
    
    class AdditionalInfoStation(BaseModel):
        opening_times: Optional[OpeningTimes] = Field(alias="openingTimes")
        car_wash_opening_times: Optional[OpeningTimes] = Field(alias="openingTimesCarWash")
        payment_methods: PaymentMethods = Field(..., alias="paymentMethods")
        fuel_types: FuelTypes = Field(..., alias="fuelTypes")
    
    
    class Example(BaseModel):
        hash_key: int = Field(..., alias="hashKey")
        range_key: str = Field(..., alias="rangeKey")
        location_id: str = Field(..., alias="locationId")
        name: str = Field(..., alias="name")
        street: str = Field(..., alias="street")
        address_number: str = Field(..., alias="addressNumber")
        zip_code: int = Field(..., alias="zipCode")
        city: str = Field(..., alias="city")
        region: str = Field(..., alias="region")
        country: str = Field(..., alias="country")
        additional_info: Union[AdditionalInfoStation] = Field(..., alias="additionalInfo")
    
    
    class ExampleList(BaseCollectionModel[EniGeoPoint]):
        pass
    
    1. Imagine that there is an ExampleList populated object and needed filters field during apply of dict method:
    example_list: ExampleList = ExampleList.parse_obj([{......}])
    
    #This istruction raised exception
    example_list.dict(by_alias=True, inlcude={"hash_key", "range_key"})
    
    1. The last istruction raise an error: Message: KeyError('__root__')

    My env is:

    • pydantic==1.9.1
    • pydantic-collections==0.2.0
    • python version 3.9.7

    If you need more info please contact me.

    opened by aferrari94 6
Releases(v0.4.0)
Owner
Roman Snegirev
Roman Snegirev
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
A fast, flexible, and performant feature selection package for python.

linselect A fast, flexible, and performant feature selection package for python. Package in a nutshell It's built on stepwise linear regression When p

88 Dec 06, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Sample code for Harry's Airflow online trainng course

Sample code for Harry's Airflow online trainng course You can find the videos on youtube or bilibili. I am working on adding below things: the slide p

102 Dec 30, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
An Integrated Experimental Platform for time series data anomaly detection.

Curve Sorry to tell contributors and users. We decided to archive the project temporarily due to the employee work plan of collaborators. There are no

Baidu 486 Dec 21, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
A neural-based binary analysis tool

A neural-based binary analysis tool Introduction This directory contains the demo of a neural-based binary analysis tool. We test the framework using

Facebook Research 208 Dec 22, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022