Collections of pydantic models

Overview

pydantic-collections

Build Status Coverage Status

The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models (and any other types supported by pydantic).

Requirements

  • Python >= 3.7
  • pydantic >= 1.8.2

Installation

pip install pydantic-collections

Usage

Basic usage

from datetime import datetime

from pydantic import BaseModel
from pydantic_collections import BaseCollectionModel


class User(BaseModel):
    id: int
    name: str
    birth_date: datetime


class UserCollection(BaseCollectionModel[User]):
    pass


 user_data = [
        {'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'},
        {'id': 2, 'name': 'Balaganov', 'birth_date': '2020-04-01T12:59:59'},
    ]

users = UserCollection(user_data)
print(users)
#> UserCollection([User(id=1, name='Bender', birth_date=datetime.datetime(2010, 4, 1, 12, 59, 59)), User(id=2, name='Balaganov', birth_date=datetime.datetime(2020, 4, 1, 12, 59, 59))])
print(users.dict())
#> [{'id': 1, 'name': 'Bender', 'birth_date': datetime.datetime(2010, 4, 1, 12, 59, 59)}, {'id': 2, 'name': 'Balaganov', 'birth_date': datetime.datetime(2020, 4, 1, 12, 59, 59)}]
print(users.json())
#> [{"id": 1, "name": "Bender", "birth_date": "2010-04-01T12:59:59"}, {"id": 2, "name": "Balaganov", "birth_date": "2020-04-01T12:59:59"}]

Strict assignment validation

By default BaseCollectionModel has a strict assignment check

...
users = UserCollection()
users.append(User(id=1, name='Bender', birth_date=datetime.utcnow()))  # OK
users.append({'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'})
#> pydantic.error_wrappers.ValidationError: 1 validation error for UserCollection
#> __root__ -> 2
#>  instance of User expected (type=type_error.arbitrary_type; expected_arbitrary_type=User)

This behavior can be changed via Model Config

...
class UserCollection(BaseCollectionModel[User]):
    class Config:
        validate_assignment_strict = False
        
users = UserCollection()
users.append({'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'})  # OK
assert users[0].__class__ is User
assert users[0].id == 1

Using as a model field

BaseCollectionModel is a subclass of BaseModel, so you can use it as a model field

...
class UserContainer(BaseModel):
    users: UserCollection = []
        
data = {
    'users': [
        {'id': 1, 'name': 'Bender', 'birth_date': '2010-04-01T12:59:59'},
        {'id': 2, 'name': 'Balaganov', 'birth_date': '2020-04-01T12:59:59'},
    ]
}

container = UserContainer(**data)
container.users.append(User(...))
...
You might also like...
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models, such as: T-test: verify if mean of distribution i

A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

 pydantic-i18n is an extension to support an i18n for the pydantic error messages.
pydantic-i18n is an extension to support an i18n for the pydantic error messages.

pydantic-i18n is an extension to support an i18n for the pydantic error messages

Python collections that are backended by sqlite3 DB and are compatible with the built-in collections

sqlitecollections Python collections that are backended by sqlite3 DB and are compatible with the built-in collections Installation $ pip install git+

Seamlessly integrate pydantic models in your Sphinx documentation.
Seamlessly integrate pydantic models in your Sphinx documentation.

Seamlessly integrate pydantic models in your Sphinx documentation.

🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.
🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Streamlit Pydantic Auto-generate Streamlit UI elements from Pydantic models. Getting Started • Documentation • Support • Report a Bug • Contribution •

Hyperlinks for pydantic models

Hyperlinks for pydantic models In a typical web application relationships between resources are modeled by primary and foreign keys in a database (int

Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

PyTorch implementation of
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

A curated list of awesome things related to Pydantic! 🌪️

Awesome Pydantic A curated list of awesome things related to Pydantic. These packages have not been vetted or approved by the pydantic team. Feel free

Pydantic model support for Django ORM

Pydantic model support for Django ORM

flask extension for integration with the awesome pydantic package

flask extension for integration with the awesome pydantic package

Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints.
Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints.

Flask Sugar is a web framework for building APIs with Flask, Pydantic and Python 3.6+ type hints. check parameters and generate API documents automatically. Flask Sugar是一个基于flask,pyddantic,类型注解的API框架, 可以检查参数并自动生成API文档

Pydantic-ish YAML configuration management.
Pydantic-ish YAML configuration management.

Pydantic-ish YAML configuration management.

(A)sync client for sms.ru with pydantic responses

🚧 aioSMSru Send SMS Check SMS status Get SMS cost Get balance Get limit Get free limit Get my senders Check login/password Add to stoplist Remove fro

Comments
  • Bug dict() method: ignore or raised exception when using dict function attribute (ex. include, exclude, etc.)

    Bug dict() method: ignore or raised exception when using dict function attribute (ex. include, exclude, etc.)

    Hi there, I tried to use the method dict but i got an error: KeyError(__root__) Here an example:

    1. Model structure:
    
    from datetime import datetime, time
    from typing import Optional, Union
    from pydantic import Field, validator, BaseModel
    from pydantic_collections import BaseCollectionModel
    
    class OpeningTime(BaseModel):
        weekday: int = Field(..., alias="weekday")
        day: Optional[str] = Field(alias="day")  # NB: keep it after number_weekday attribute
        from_time: Optional[time] = Field(alias="fromTime")
        to_time: Optional[time] = Field(alias="toTime")
    
        @validator("day", pre=True)
        def generate_weekday(cls, weekday: str, values) -> str:
            if weekday is None or len(weekday) == 0:
                return WEEKDAYS[str(values["weekday"])]
            return weekday
    
    
    
    class OpeningTimes(BaseCollectionModel[OpeningTime]):
        pass
    
    
    class PaymentMethod(BaseModel):
        type: str = Field(..., alias="type")
        card_type: str = Field(..., alias="cardType")
    
    
    class PaymentMethods(BaseCollectionModel[PaymentMethod]):
        pass
    
    
    class FuelType(BaseModel):
        type: str = Field(..., alias="Fuel")
    
    
    class FuelTypes(BaseCollectionModel[FuelType]):
        pass
    
    
    class AdditionalInfoStation(BaseModel):
        opening_times: Optional[OpeningTimes] = Field(alias="openingTimes")
        car_wash_opening_times: Optional[OpeningTimes] = Field(alias="openingTimesCarWash")
        payment_methods: PaymentMethods = Field(..., alias="paymentMethods")
        fuel_types: FuelTypes = Field(..., alias="fuelTypes")
    
    
    class Example(BaseModel):
        hash_key: int = Field(..., alias="hashKey")
        range_key: str = Field(..., alias="rangeKey")
        location_id: str = Field(..., alias="locationId")
        name: str = Field(..., alias="name")
        street: str = Field(..., alias="street")
        address_number: str = Field(..., alias="addressNumber")
        zip_code: int = Field(..., alias="zipCode")
        city: str = Field(..., alias="city")
        region: str = Field(..., alias="region")
        country: str = Field(..., alias="country")
        additional_info: Union[AdditionalInfoStation] = Field(..., alias="additionalInfo")
    
    
    class ExampleList(BaseCollectionModel[EniGeoPoint]):
        pass
    
    1. Imagine that there is an ExampleList populated object and needed filters field during apply of dict method:
    example_list: ExampleList = ExampleList.parse_obj([{......}])
    
    #This istruction raised exception
    example_list.dict(by_alias=True, inlcude={"hash_key", "range_key"})
    
    1. The last istruction raise an error: Message: KeyError('__root__')

    My env is:

    • pydantic==1.9.1
    • pydantic-collections==0.2.0
    • python version 3.9.7

    If you need more info please contact me.

    opened by aferrari94 6
Releases(v0.4.0)
Owner
Roman Snegirev
Roman Snegirev
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Dec 25, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
SparseLasso: Sparse Solutions for the Lasso

SparseLasso: Sparse Solutions for the Lasso Introduction SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tunin

Gabriel Okasa 1 Nov 08, 2021
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

FangWei 1 Jan 16, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI Objetivos Criar infraestrutura como código Utuilizando um cluster Kubernetes na Azure Ingestão

Otacilio Filho 4 Jan 23, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022