A model checker for verifying properties in epistemic models

Overview

Epistemic Model Checker

This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralistic Ignorace in complex scenarios and to probe its robustness. The motivation is based on the content of the paper [1].

Run the model checker by running run.py file using your favorite Python interpreter. This file takes two arguments, a model file and an epistemic logic formula:

python run.py model_file.em "(~p) \/ p"

Model file format:

{states}
{agents}
{agent}:({state}<={state}),...
...
{agent}:({state}<={state}),...
{state}:{proposition},...
...
{state}:{proposition},...

The models will be made transitive and reflexive upon parsing, so the user does not have to specify this. Here you can see an example model file:

s0,s1,s2
a,b
a:(s0<=s1),(s1<=s2)
b:(s2<=s0)
s1:q
s1:p
s2:p,r

This model contains three states, s0, s1 and s2 and two agents, a and b.

The formulas are written using the following operators:

  • K = knowledge
  • B = belief
  • S = safe belief
  • W = weakly safe belief
  • T = strong belief
  • I = ignorance
  • D = doubt
  • /\ = AND
  • \/ = OR
  • => = implication
  • ~ = NOT
  • (f1) ! (f2) = $[!\verb/f1/]\verb/f2/$

Some example formulas are shown below:

p /\ (~q)
I_a (D_b (p))
(K_a p) => (B_a p)
K_a ((B_b (~p)) ! (~(B_c (B_b (~p)))))

Please note that the parsing of parentheses can be tricky. If you encounter an error in the parse function, please try to add or remove some parentheses in the formula.

Future work

The following features would be nice to have:

  • Better parsing of logic formulas
  • Caching of results from intermediate steps
  • Define formulas in files instead of in the command line

Bibliography

[1] Hansen, Jens Ulrik. "A logic-based approach to pluralistic ignorance." Proceedings of PhDs in Logic III. to appear (2012).

Owner
Thomas Träff
Chooo chooooo
Thomas Träff
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

4 Aug 02, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021