Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Overview

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI

Objetivos

  • Criar infraestrutura como código
  • Utuilizando um cluster Kubernetes na Azure
    • Ingestão dos dados do Enade 2017 com python para o datalake na Azure
    • Transformar os dados da camada bronze para camada silver usando delta format
    • Enrriquecer os dados da camada silver para camada gold usando delta format
  • Utilizar Azure Synapse Serveless SQL Poll para servir os dados

Arquitetura

arquitetura

Passos

Criar infra

source infra/00-variables

bash infra/01-create-rg.sh

bash infra/02-create-cluster-k8s.sh

bash infra/03-create-lake.sh

bash infra/04-create-synapse.sh

bash infra/05-access-assignments.sh

Preparar k8s

Baixar kubeconfig file

bash infra/02-get-kubeconfig.sh

Para facilitar os comandos usar um alias

alias k=kubectl

Criar namespace

k create namespace processing
k create namespace ingestion

Criar Service Account e Role Bing

k apply -f k8s/crb-spark.yaml

Criar secrets

k create secret generic azure-service-account --from-env-file=.env --namespace processing
k create secret generic azure-service-account --from-env-file=.env --namespace ingestion

Intalar Spark Operator

helm repo add spark-operator https://googlecloudplatform.github.io/spark-on-k8s-operator

helm repo update

helm install spark spark-operator/spark-operator --set image.tag=v1beta2-1.2.3-3.1.1 --namespace processing

Ingestion app

Ingestion Image

docker build ingestion -f ingestion/Dockerfile -t otaciliopsf/cde-bootcamp:desafio-mod4-ingestion --network=host

docker push otaciliopsf/cde-bootcamp:desafio-mod4-ingestion

Apply ingestion job

k8s/ingestion-job.yaml k apply -f k8s/ingestion-job.yaml ">
# primeiro mudar o nome unico do pod
cat k8s/ingestion-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);y['metadata']['name']=y['metadata']['name'][:-8]+str(uuid.uuid4())[:8];print(yaml.dump(y))"\
> k8s/ingestion-job.yaml

k apply -f k8s/ingestion-job.yaml

Logs

ING_POD_NAME=$(cat k8s/ingestion-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);print(y['metadata']['name'])")

k logs $ING_POD_NAME -n ingestion --follow

Spark

Criar Job Image

docker build spark -f spark/Dockerfile -t otaciliopsf/cde-bootcamp:desafio-mod4

docker push otaciliopsf/cde-bootcamp:desafio-mod4

Apply job

k8s/spark-job.yaml k apply -f k8s/spark-job.yaml ">
# primeiro muda o nome unico da Spark Application
cat k8s/spark-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);y['metadata']['name']=y['metadata']['name'][:-8]+str(uuid.uuid4())[:8];print(yaml.dump(y))"\
> k8s/spark-job.yaml

k apply -f k8s/spark-job.yaml

logs

SPARK_APP_NAME=$(cat k8s/spark-job.yaml |\
python3 -c "import sys,yaml,uuid;y=yaml.safe_load(sys.stdin);print(y['metadata']['name'])")'-driver'

k logs $SPARK_APP_NAME -n processing --follow

Azure Synapse Serveless SQL Poll

Acessar o Synapse workspace através do link gerado

bash infra/04-get-workspace-url.sh

Para começar a usar siga os passos

steps-synapse

Rodar o conteudo do script create-synapse-view.sql no Synapse workspace para criar a view da tabela no lake

Pronto, o Synapse esta pronto para receber as querys.

Limpando os recursos

bash infra/99-delete-service-principal.sh

bash infra/99-delete-rg.sh

Conclusão

Seguindo os passos citados é possivel realizar querys direto na camada gold do delta lake utilizando o Synapse

Owner
Otacilio Filho
Data Engineer Azure | Python | Spark | Databricks
Otacilio Filho
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

Nguyễn Quang Huy 5 Sep 28, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove

Ryan McGeehan 3 Nov 04, 2022
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
MS in Data Science capstone project. Studying attacks on autonomous vehicles.

Surveying Attack Models for CAVs Guide to Installing CARLA and Collecting Data Our project focuses on surveying attack models for Connveced Autonomous

Isabela Caetano 1 Dec 09, 2021
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Multiple Pairwise Comparisons (Post Hoc) Tests in Python

scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal

Maksim Terpilowski 264 Dec 30, 2022
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 04, 2023
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022