Wafer Fault Detection - Wafer circleci with python

Overview

Wafer Fault Detection

Problem Statement:

Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor,
such as a crystalline silicon (c-Si), used for fabricationof integrated circuits and in photovoltaics,
to manufacture solar cells.

The inputs of various sensors for different wafers have been provided.
The goal is to build a machine learning model which predicts whether a wafer needs to be replaced or not
(i.e whether it is working or not) nased on the inputs from various sensors.
There are two classes: +1 and -1.
+1: Means that the wafer is in a working condition and it doesn't need to be replaced.
-1: Means that the wafer is faulty and it needa to be replaced.

Data Description

The client will send data in multiple sets of files in batches at a given location.
Data will contain Wafer names and 590 columns of different sensor values for each wafer.
The last column will have the "Good/Bad" value for each wafer.

Apart from training files, we laso require a "schema" file from the client, which contain all the
relevant information about the training files such as:

Name of the files, Length of Date value in FileName, Length of Time value in FileName, NUmber of Columnns, 
Name of Columns, and their dataype.

Data Validation

In This step, we perform different sets of validation on the given set of training files.

Name Validation: We validate the name of the files based on the given name in the schema file. We have 
created a regex patterg as per the name given in the schema fileto use for validation. After validating 
the pattern in the name, we check for the length of the date in the file name as well as the length of time 
in the file name. If all the values are as per requirements, we move such files to "Good_Data_Folder" else
we move such files to "Bad_Data_Folder."

Number of Columns: We validate the number of columns present in the files, and if it doesn't match with the
value given in the schema file, then the file id moves to "Bad_Data_Folder."

Name of Columns: The name of the columns is validated and should be the same as given in the schema file. 
If not, then the file is moved to "Bad_Data_Folder".

The datatype of columns: The datatype of columns is given in the schema file. This is validated when we insert
the files into Database. If the datatype is wrong, then the file is moved to "Bad_Data_Folder."

Null values in columns: If any of the columns in a file have all the values as NULL or missing, we discard such
a file and move it to "Bad_Data_Folder".

Data Insertion in Database

 Database Creation and Connection: Create a database with the given name passed. If the database is already created,
 open the connection to the database.
 
 Table creation in the database: Table with name - "Good_Data", is created in the database for inserting the files 
 in the "Good_Data_Folder" based on given column names and datatype in the schema file. If the table is already
 present, then the new table is not created and new files are inserted in the already present table as we want 
 training to be done on new as well as old training files.
 
 Insertion of file in the table: All the files in the "Good_Data_Folder" are inserted in the above-created table. If
 any file has invalid data type in any of the columns, the file is not loaded in the table and is moved to 
 "Bad_Data_Folder".

Model Training

 Data Export from Db: The data in a stored database is exported as a CSV file to be used for model training.
 
 Data Preprocessing: 
    Check for null values in the columns. If present, impute the null values using the KNN imputer.
    
    Check if any column has zero standard deviation, remove such columns as they don't give any information during 
    model training.
    
 Clustering: KMeans algorithm is used to create clusters in the preprocessed data. The optimum number of clusters 
 is selected

Create a file "Dockerfile" with below content

FROM python:3.7
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT [ "python" ]
CMD [ "main.py" ]

Create a "Procfile" with following content

web: gunicorn main:app

create a file ".circleci\config.yml" with following content

> $BASH_ENV echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV python3 -m venv venv . venv/bin/activate pip install --upgrade pip pip install -r requirements.txt - save_cache: key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }} paths: - "venv" - run: command: | . venv/bin/activate python -m pytest -v tests/test_script.py - store_artifacts: path: test-reports/ destination: tr1 - store_test_results: path: test-reports/ - setup_remote_docker: version: 19.03.13 - run: name: Build and push Docker image command: | docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG . docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG deploy: executor: heroku/default steps: - checkout - run: name: Storing previous commit command: | git rev-parse HEAD > ./commit.txt - heroku/install - setup_remote_docker: version: 18.06.0-ce - run: name: Pushing to heroku registry command: | heroku container:login #heroku ps:scale web=1 -a $HEROKU_APP_NAME heroku container:push web -a $HEROKU_APP_NAME heroku container:release web -a $HEROKU_APP_NAME workflows: build-test-deploy: jobs: - build-and-test - deploy: requires: - build-and-test filters: branches: only: - main ">
version: 2.1
orbs:
  heroku: circleci/[email protected]
jobs:
  build-and-test:
    executor: heroku/default
    docker:
      - image: circleci/python:3.6.2-stretch-browsers
        auth:
          username: mydockerhub-user
          password: $DOCKERHUB_PASSWORD  # context / project UI env-var reference
    steps:
      - checkout
      - restore_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
      - run:
          name: Install Python deps in a venv
          command: |
            echo 'export TAG=0.1.${CIRCLE_BUILD_NUM}' >> $BASH_ENV
            echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV
            python3 -m venv venv
            . venv/bin/activate
            pip install --upgrade pip
            pip install -r requirements.txt
      - save_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
          paths:
            - "venv"
      - run:
          command: |
            . venv/bin/activate
            python -m pytest -v tests/test_script.py
      - store_artifacts:
          path: test-reports/
          destination: tr1
      - store_test_results:
          path: test-reports/
      - setup_remote_docker:
          version: 19.03.13
      - run:
          name: Build and push Docker image
          command: |
            docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG .
            docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io
            docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG
  deploy:
    executor: heroku/default
    steps:
      - checkout
      - run:
          name: Storing previous commit
          command: |
            git rev-parse HEAD > ./commit.txt
      - heroku/install
      - setup_remote_docker:
          version: 18.06.0-ce
      - run:
          name: Pushing to heroku registry
          command: |
            heroku container:login
            #heroku ps:scale web=1 -a $HEROKU_APP_NAME
            heroku container:push web -a $HEROKU_APP_NAME
            heroku container:release web -a $HEROKU_APP_NAME

workflows:
  build-test-deploy:
    jobs:
      - build-and-test
      - deploy:
          requires:
            - build-and-test
          filters:
            branches:
              only:
                - main

to create requirements.txt

pip freeze>requirements.txt

initialize git repo

git push -u origin main ">
git init
git add .
git commit -m "first commit"
git branch -M main
git remote add origin 
   
    
git push -u origin main

   

create a account at circle ci

Circle CI

setup your project

Setup project

Select project setting in CircleCI and below environment variable

DOCKERHUB_USER
DOCKER_HUB_PASSWORD_USER
HEROKU_API_KEY
HEROKU_APP_NAME
HEROKU_EMAIL_ADDRESS
DOCKER_IMAGE_NAME=wafercircle3270303

to update the modification

git add .
git commit -m "proper message"
git push 
Owner
Avnish Yadav
Avnish Yadav
Flexible HDF5 saving/loading and other data science tools from the University of Chicago

deepdish Flexible HDF5 saving/loading and other data science tools from the University of Chicago. This repository also host a Deep Learning blog: htt

UChicago - Department of Computer Science 255 Dec 10, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Clean and reusable data-sciency notebooks.

KPACUBO KPACUBO is a set Jupyter notebooks focused on the best practices in both software development and data science, namely, code reuse, explicit d

Matvey Morozov 1 Jan 28, 2022
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
Feature engineering and machine learning: together at last

Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu

Alexandr Savinov 14 Sep 15, 2022
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Powerful, efficient particle trajectory analysis in scientific Python.

freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics

Glotzer Group 195 Dec 20, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022