CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

Overview

C$50 Finance

In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below:

Picture of dashboard

Background

If you’re not quite sure what it means to buy and sell stocks (i.e., shares of a company), head here for a tutorial.

We’re about to implement C$50 Finance, a web app via which you can manage portfolios of stocks. Not only will this tool allow us to check real stocks’ actual prices and portfolios’ values, it will also let you buy and sell stocks by querying IEX for stocks’ prices.

Indeed, IEX lets you download stock quotes via their API (application programming interface) using URLs like https://cloud.iexapis.com/stable/stock/nflx/quote?token=API_KEY.

Before getting started on this project, we’ll need to register for an API key in order to be able to query IEX’s data. To do so, follow these steps:

  • Visit iexcloud.io/cloud-login#/register/.
  • Select the “Individual” account type, then enter your email address and a password, and click “Create account”.
  • Once registered, scroll down to “Get started for free” and click “Select Start” to choose the free plan.
  • Once you’ve confirmed your account via a confirmation email, visit (https://iexcloud.io/console/tokens).
  • Copy the key that appears under the Token column (it should begin with pk_).
  • In a terminal window execute:
export API_KEY=value

where value is that (pasted) value, without any space immediately before or after the =. You also may wish to paste that value in a text document somewhere, in case you need it again later.

Install requirements

This guide wrote for Windows Terminal and if you have another OS you may change it.

Before we start, you should clone this GitHub repo and then install the dependencies.

git clone https://github.com/magnooj/CS50-finance.git
cd CS50-fincance
pip install -r requirements.txt

Through the files

Now, we are ready to run and test our project. By running ls you can see these files:

Flask API

The first step in building APIs is to think about the data we want to handle, how we want to handle it and what output we want with our APIs. In our example, we want users can register, log in, log out and buy, sell and qout stocks; Finally, see the history of their transactions.

The main HTML file in our app is layout.html. We created a template that other HTML files cand extend that.

In this example, we create Flask eight routs so that we can serve HTTP traffic on that route.

  • / or index : Is the homepage of our app. If user loged in, it display the user’s current cash balance along with a grand total (i.e., stocks’ total value plus cash). But, if user didn.t log in, it displays the login page.
  • register : It has a form that user can register by filling it.
  • buy : In this route, users can input a stock’s symbol and buy some shares.
  • sell : In this page, users can SELECT from theis stocks’ symbol and sell their shares.
  • qoute : Users can lookup the price each share in a stock’s symbol.
  • history : It displays an HTML table summarizing all of a user’s transactions ever, listing row by row each and every buy and every sell.
  • login and logout : These routes start and terminate user’s session.

Of course there is some files like apology.html that displays the error to the user. You can check other files.

Now, We cheked our files and sqw how our app is working. To run the app, when you are in CS50-finance directory, enter this command in the terminal:

flask run

I hope you enjoyed how to stocks' exchange web application using flask. if you have any comments please do not hesitate to send me an e-mail.

Regards,

Ali Ganjizadeh

Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove

Ryan McGeehan 3 Nov 04, 2022
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
An Aspiring Drop-In Replacement for NumPy at Scale

Legate NumPy is a Legate library that aims to provide a distributed and accelerated drop-in replacement for the NumPy API on top of the Legion runtime. Using Legate NumPy you do things like run the f

Legate 502 Jan 03, 2023
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021