Anomaly Detection with R

Overview

AnomalyDetection R package

Build Status Pending Pull-Requests Github Issues

AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the presence of seasonality and an underlying trend. The AnomalyDetection package can be used in wide variety of contexts. For example, detecting anomalies in system metrics after a new software release, user engagement post an A/B test, or for problems in econometrics, financial engineering, political and social sciences.

How the package works

The underlying algorithm – referred to as Seasonal Hybrid ESD (S-H-ESD) builds upon the Generalized ESD test for detecting anomalies. Note that S-H-ESD can be used to detect both global as well as local anomalies. This is achieved by employing time series decomposition and using robust statistical metrics, viz., median together with ESD. In addition, for long time series (say, 6 months of minutely data), the algorithm employs piecewise approximation - this is rooted to the fact that trend extraction in the presence of anomalies in non-trivial - for anomaly detection.

Besides time series, the package can also be used to detect anomalies in a vector of numerical values. We have found this very useful as many times the corresponding timestamps are not available. The package provides rich visualization support. The user can specify the direction of anomalies, the window of interest (such as last day, last hour), enable/disable piecewise approximation; additionally, the x- and y-axis are annotated in a way to assist visual data analysis.

How to get started

Install the R package using the following commands on the R console:

install.packages("devtools")
devtools::install_github("twitter/AnomalyDetection")
library(AnomalyDetection)

The function AnomalyDetectionTs is called to detect one or more statistically significant anomalies in the input time series. The documentation of the function AnomalyDetectionTs, which can be seen by using the following command, details the input arguments and the output of the function AnomalyDetectionTs.

help(AnomalyDetectionTs)

The function AnomalyDetectionVec is called to detect one or more statistically significant anomalies in a vector of observations. The documentation of the function AnomalyDetectionVec, which can be seen by using the following command, details the input arguments and the output of the function AnomalyDetectionVec.

help(AnomalyDetectionVec)

A simple example

To get started, the user is recommended to use the example dataset which comes with the packages. Execute the following commands:

data(raw_data)
res = AnomalyDetectionTs(raw_data, max_anoms=0.02, direction='both', plot=TRUE)
res$plot

Fig 1

From the plot, we observe that the input time series experiences both positive and negative anomalies. Furthermore, many of the anomalies in the time series are local anomalies within the bounds of the time series’ seasonality (hence, cannot be detected using the traditional approaches). The anomalies detected using the proposed technique are annotated on the plot. In case the timestamps for the plot above were not available, anomaly detection could then carried out using the AnomalyDetectionVec function; specifically, one can use the following command:

AnomalyDetectionVec(raw_data[,2], max_anoms=0.02, period=1440, direction='both', only_last=FALSE, plot=TRUE)

Often, anomaly detection is carried out on a periodic basis. For instance, at times, one may be interested in determining whether there was any anomaly yesterday. To this end, we support a flag only_last whereby one can subset the anomalies that occurred during the last day or last hour. Execute the following command:

res = AnomalyDetectionTs(raw_data, max_anoms=0.02, direction='both', only_last=”day”, plot=TRUE)
res$plot

Fig 2

From the plot, we observe that only the anomalies that occurred during the last day have been annotated. Further, the prior six days are included to expose the seasonal nature of the time series but are put in the background as the window of prime interest is the last day.

Anomaly detection for long duration time series can be carried out by setting the longterm argument to T.

Copyright and License

Copyright 2015 Twitter, Inc and other contributors

Licensed under the GPLv3

You might also like...
A Python Library for Graph Outlier Detection (Anomaly Detection)
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

Find big moving stocks before they move using machine learning and anomaly detection
Find big moving stocks before they move using machine learning and anomaly detection

Surpriver - Find High Moving Stocks before they Move Find high moving stocks before they move using anomaly detection and machine learning. Surpriver

A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

Awesome anomaly detection in medical images

A curated list of awesome anomaly detection works in medical imaging, inspired by the other awesome-* initiatives.

Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

Demo project for real time anomaly detection using kafka and python
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Unofficial implementation of PatchCore anomaly detection
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

Anomaly detection on SQL data warehouses and databases
Anomaly detection on SQL data warehouses and databases

With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

A PyTorch implementation of
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Comments
  • Anomaly Detection from Data vs Image

    Anomaly Detection from Data vs Image

    I was assigned with project to do anomaly detection on for all our company KPIs. I googled and found AnomalyDetection by Twitter. There was an idea from my colleague to do the anomaly detection on the graph images (comparing with previous week images to identify anomaly points) instead of using time-series raw data.

    I am not familiar with the Anomaly Detection, anyone here experienced and able to advice which one is better (Anomaly Detection from data or image) in term of accuracy, storage and processing time.

    opened by hscj87 0
  • ad_ts does not work with data.table

    ad_ts does not work with data.table

    I'm using a data set with different time series, I'm store it as data.table So in every iteration I filter by some condition:

    DT[var1 == x, c("date", "var2")]

    Error in rbindlist(l, use.names, fill, idcol) : Class attribute on column 1 of item 2 does not match with column 1 of item 1.

    This happen because date column is store as numeric(0), ie:

    all_anoms <- data.frame(timestamp = numeric(0), count = numeric(0)) meanwhile column date is required to be POSIXct/POSIXlt

    opened by fedemolina 0
  • Cannot remove prior installation of package ‘Rcpp’?

    Cannot remove prior installation of package ‘Rcpp’?

    Error: Failed to install 'AnomalyDetection' from GitHub: (converted from warning) cannot remove prior installation of package ‘Rcpp’

    Which version of R is supported?

    opened by esride-jts 1
  • Definition of period in AnomalyDetectionVec !!!

    Definition of period in AnomalyDetectionVec !!!

    The date of the data I have is the monthly data from January 2010, February 2010 to December 2019. I want to use AnomalyDetectionVec to find anomaly for the data. I am wondering should I set period = 12 or else??? Can someone explain more in detail on how the period perimeter work in AnomalyDetectionVec.

    opened by dbsxo2995 2
Releases(v1.0.0)
  • v1.0.0(Jan 6, 2015)

    Today, we’re announcing AnomalyDetection, our open-source R package that automatically detects anomalies like these in big data in a practical and robust way.

    https://blog.twitter.com/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series

    Source code(tar.gz)
    Source code(zip)
Owner
Twitter
Twitter 💙 #opensource
Twitter
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022
📊 Python Flask game that consolidates data from Nasdaq, allowing the user to practice buying and selling stocks.

Web Trader Web Trader is a trading website that consolidates data from Nasdaq, allowing the user to search up the ticker symbol and price of any stock

Paulina Khew 21 Aug 30, 2022
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023