Create matplotlib visualizations from the command-line

Overview

MatplotCLI

Create matplotlib visualizations from the command-line

MatplotCLI is a simple utility to quickly create plots from the command-line, leveraging Matplotlib.

plt "scatter(x,y,5,alpha=0.05); axis('scaled')" < sample.json

plt "hist(x,30)" < sample.json

MatplotCLI accepts both JSON lines and arrays of JSON objects as input. Look at the recipes section to learn how to handle other formats like CSV.

MatplotCLI executes python code (passed as argument) where some handy imports are already done (e.g. from matplotlib.pyplot import *) and where the input JSON data is already parsed and available in variables, making plotting easy. Please refer to matplotlib.pyplot's reference and tutorial for comprehensive documentation about the plotting commands.

Data from the input JSON is made available in the following way. Given the input myfile.json:

{"a": 1, "b": 2}
{"a": 10, "b": 20}
{"a": 30, "c$d": 40}

The following variables are made available:

data = {
    "a": [1, 10, 30],
    "b": [2, 20, None],
    "c_d": [None, None, 40]
}

a = [1, 10, 30]
b = [2, 20, None]
c_d = [None, None, 40]

col_names = ("a", "b", "c_d")

So, for a scatter plot a vs b, you could simply do:

plt "scatter(a,b); title('a vs b')" < myfile.json

Notice that the names of JSON properties are converted into valid Python identifiers whenever they are not (e.g. c$d was converted into c_d).

Execution flow

  1. Import matplotlib and other libs;
  2. Read JSON data from standard input;
  3. Execute user code;
  4. Show the plot.

All steps (except step 3) can be skipped through command-line options.

Installation

The easiest way to install MatplotCLI is from pip:

pip install matplotcli

Recipes and Examples

Plotting JSON data

MatplotCLI natively supports JSON lines:

echo '
    {"a":0, "b":1}
    {"a":1, "b":0}
    {"a":3, "b":3}' |
plt "plot(a,b)"

and arrays of JSON objects:

echo '[
    {"a":0, "b":1},
    {"a":1, "b":0},
    {"a":3, "b":3}]' |
plt "plot(a,b)"

Plotting from a csv

SPyQL is a data querying tool that allows running SQL queries with Python expressions on top of different data formats. Here, SPyQL is reading a CSV file, automatically detecting if there's an header row, the dialect and the data type of each column, and converting the output to JSON lines before handing over to MatplotCLI.

cat my.csv | spyql "SELECT * FROM csv TO json" | plt "plot(x,y)"

Plotting from a yaml/xml/toml

yq converts yaml, xml and toml files to json, allowing to easily plot any of these with MatplotCLI.

cat file.yaml | yq -c | plt "plot(x,y)"
cat file.xml | xq -c | plt "plot(x,y)"
cat file.toml | tomlq -c | plt "plot(x,y)"

Plotting from a parquet file

parquet-tools allows dumping a parquet file to JSON format. jq -c makes sure that the output has 1 JSON object per line before handing over to MatplotCLI.

parquet-tools cat --json my.parquet | jq -c | plt "plot(x,y)"

Plotting from a database

Databases CLIs typically have an option to output query results in CSV format (e.g. psql --csv -c query for PostgreSQL, sqlite3 -csv -header file.db query for SQLite).

Here we are visualizing how much space each namespace is taking in a PostgreSQL database. SPyQL converts CSV output from the psql client to JSON lines, and makes sure there are no more than 10 items, aggregating the smaller namespaces in an All others category. Finally, MatplotCLI makes a pie chart based on the space each namespace is taking.

psql -U myuser mydb --csv  -c '
    SELECT
        N.nspname,
        sum(pg_relation_size(C.oid))*1e-6 AS size_mb
    FROM pg_class C
    LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
    GROUP BY 1
    ORDER BY 2 DESC' |
spyql "
    SELECT
        nspname if row_number < 10 else 'All others' as name,
        sum_agg(size_mb) AS size_mb
    FROM csv
    GROUP BY 1
    TO json" |
plt "
nice_labels = ['{0}\n{1:,.0f} MB'.format(n,s) for n,s in zip(name,size_mb)];
pie(size_mb, labels=nice_labels, autopct='%1.f%%', pctdistance=0.8, rotatelabels=True)"

Plotting a function

Disabling reading from stdin and generating the output using numpy.

plt --no-input "
x = np.linspace(-1,1,2000);
y = x*np.sin(1/x);
plot(x,y);
axis('scaled');
grid(True)"

Saving the plot to an image

Saving the output without showing the interactive window.

cat sample.json |
plt --no-show "
hist(x,30);
savefig('myimage.png', bbox_inches='tight')"

Plot of the global temperature

Here's a complete pipeline from getting the data to transforming and plotting it:

  1. Downloading a CSV file with curl;
  2. Skipping the first row with sed;
  3. Grabbing the year column and 12 columns with monthly temperatures to an array and converting to JSON lines format using SPyQL;
  4. Exploding the monthly array with SPyQL (resulting in 12 rows per year) while removing invalid monthly measurements;
  5. Plotting with MatplotCLI .
curl https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv |
sed 1d |
spyql "
  SELECT Year, cols[1:13] AS temps
  FROM csv
  TO json" |
spyql "
  SELECT
    json->Year + ((row_number-1)%12)/12 AS year,
    json->temps AS temp
  FROM json
  EXPLODE json->temps
  WHERE json->temps is not Null
  TO json" |
plt "
scatter(year, temp, 2, temp);
xlabel('Year');
ylabel('Temperature anomaly w.r.t. 1951-80 (ºC)');
title('Global surface temperature (land and ocean)')"

You might also like...
These data visualizations were created for my introductory computer science course using Python
These data visualizations were created for my introductory computer science course using Python

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

These data visualizations were created as homework for my CS40 class. I hope you enjoy!
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Make scripted visualizations in blender
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Standardized plots and visualizations in Python
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Visualizations of some specific solutions of different differential equations.
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

Data aggregated from the reports found at the MCPS COVID Dashboard into a set of visualizations.

Montgomery County Public Schools COVID-19 Visualizer Contents About this project Data Support this project About this project Data All data we use can

Comments
  • stats about input data

    stats about input data

    option to print simple statistics about the input data. e.g. for each field

    • number of missing values
    • number of distinct values
    • avg, min, max (if numeric)
    • number of nan, inf (if float)
    • ...
    enhancement good first issue 
    opened by dcmoura 0
Releases(v0.2.0)
Owner
Daniel Moura
Daniel Moura
This is my favourite function - the Rastrigin function.

This is my favourite function - the Rastrigin function. What sparked my curiosity and interest in the function was its complexity in terms of many local optimum points, which makes it particularly in

1 Dec 27, 2021
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
🌀❄️🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in python3.

Weather-Plotting 🌀 ❄️ 🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in pytho

Giannis Dravilas 21 Dec 10, 2022
A programming language built on top of Python to easily allow Swahili speakers to get started with programming without ever knowing English

pyswahili A programming language built over Python to easily allow swahili speakers to get started with programming without ever knowing english pyswa

Jordan Kalebu 72 Dec 15, 2022
A custom qq-plot for two sample data comparision

QQ-Plot 2 Sample Just a gist to include the custom code to draw a qq-plot in python when dealing with a "two sample problem". This means when u try to

1 Dec 20, 2021
Gesture controlled media player

Media Player Gesture Control Gesture controller for media player with MediaPipe, VLC and OpenCV. Contents About Setup About A tool for using gestures

Atharva Joshi 2 Dec 22, 2021
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

249 Jan 06, 2023
This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th project are focused on Data Analysis, some of them are also put here to show off other skills that I have learned.

Welcome to my Data Analysis projects page! This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th proje

Kyle Dini 1 Jan 31, 2022
Sky attention heatmap of submissions to astrometry.net

astroheat Installation Requires Python 3.6+, Tested with Python 3.9.5 Install library dependencies pip install -r requirements.txt The program require

4 Jun 20, 2022
Extract and visualize information from Gurobi log files

GRBlogtools Extract information from Gurobi log files and generate pandas DataFrames or Excel worksheets for further processing. Also includes a wrapp

Gurobi Optimization 56 Nov 17, 2022
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
Easily convert matplotlib plots from Python into interactive Leaflet web maps.

mplleaflet mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embe

Jacob Wasserman 502 Dec 28, 2022
OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Open Stats Discover and share the KPIs of your OpenSource project. OpenStats is a library built on top of streamlit that extracts data from the Github

Pere Miquel Brull 4 Apr 03, 2022
Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain amount of time.

Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain

Bohdan Ruban 5 Nov 08, 2022
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Siva Prakash 5 Jan 02, 2022
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
Mattia Ficarelli 2 Mar 29, 2022
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
Set of matplotlib operations that are not trivial

Matplotlib Snippets This repository contains a set of matplotlib operations that are not trivial. Histograms Histogram with bins adapted to log scale

Raphael Meudec 1 Nov 15, 2021