Visualization of numerical optimization algorithms

Overview

Visualization of numerical optimization algorithms

Numerical optimization is one of the core math foundations in image processing and machine learning. But I remember in the beginning of my Ph.D. years, the math behind always made me frustrated 🙁 🙁 .

During the winter vacation of 2016, I decided to make a change. I revisited some well-known optimization methods (e.g., Gradient Descent, Newton/Quasi-Newton Method, ALM, etc.), and made a series of GIF visualizations to show how these algorithms behave dynamically. Check out this repository and hope it can help you better understand these algorithms.

Gradient Descent Methods.

Fixed step size: Step size=0.5.

Fixed step size: Step size=0.1.

Fixed step size: Step size=1.

Gradient decent with the Nesterov Momentum.

Steepest Descent Method. The step size is determined by using line-search towards the gradient decent direction. The "zigzag" trajectory may cause slow convergence at ill-conditioned regions.

Conjugate Gradient Descent and Coordinate Descent Methods.

Fletcher-Reeves (FR). The FR conjugate gradient method may have very slow convergence rate if the step size is not well controlled.

Polakhe-Ribiere-Polyak (RPR). The PRP method is usually better than FR for ill-conditioned problems. Note that although it is called a "conjugate" method, the update direction (red line) is usually not vertical to the true gradient direction (black line).

Coordinate Descent. The coordinate descent method selects only one coordinate at one time for update. The well-known LibLinear package incorporates this idea to solve the linear SVM. In ill-conditioned regions, this algorithm may also face the "zigzag-step" problem.

Newton Methods.

Basic Newton Method. The black curve is the contour of the 2nd order approximation of the objective function. As the Hessian matrix at the initial point is non-positive, the optimization is not stable at very early steps.

Levenbery-Marquardt (LM) Method. LM method improves the stability of the basic Newton method by adding a small diagonal matrix to the Hessian matrix. This algorithm also can be seen as an integration of the basic Newton method and the gradient descent method.

Damped Newton Method. Damped Newton method can be viewed as a combination of the basic Newton method and the line-search based method. In spite of the fact that the Hessian matrix may be non-positive, the convergance can still be guaranteed.

Broyden Fletcher Goldfarb Shanno (BFGS). The BFGS method is the representative of quasi-Newton methods. It takes the first order gradients to approximate the Hessian matrix. In this figure, the red curve represents the true second-order information, while the black curve represents an approximated one by using BFGS.

Gaussian Newton Least Square Method (GNLS). The Gaussian-Newton least square method is a classical algorithm for solving nonlinear least squares regression problems. The essence of this algorithm is to use the first order Jacobian matrix (black curve) as an approximation of the Hessian matrix (red curve).

Random search algorithm

Genetic Algorithm (GA). GA is a classical algorithm to solve non-convex optimization problems. The key to this algorithm can be summarized as: "breeding", "mutation" and "natural selection". In this figure, the green scatters represent the descendants and the red ones represent the result of natural selection.

Simulated Annealing Algorithm (SAA). SAA is another kind of classical algorithm to solve nonconvex optimization problems. In this figure, the red curve on the right corresponds to the "temperature" and the blue curve corresponds to the objective function value. The objective function value converges with the decrease of the temperature.

Constrained Optimization Method

Gradient Projection Method (GPM). GPM is the most straight-forward way to solve a constrained optimization problem. In each interation, the gradient is projected to the feasible domain to make the current point satisfies the constraints.

Exterior-Point Penalty Method. The exterior-point penalty method is a classical way to solve constrained optimization problems. The key to this algorithm is to penalize the objective function outside the feasible domain so that to convert the original constrained problem into an unconstrained one. Note that the objectve may become ill-conditioned at the boundary of the constraints.

Inner-Point Barrier Method. The Inner-Point Barrier Method is another classical way to solve constrained optimization problems. Different from the exterior-point penalty methods where the objective is penalized outside the feasible region, the inner-point barrier method constructs a barrier function at the boundary of the feasible domain so that to prevent crossing the boundary. Similar to the exterior-point penalty method, the objectve may become ill-conditioned at the boundary of the constraints.

Lagrange Dual Ascent Method. By adding a Lagrangian multiplier, any constrained problem can be equally converted to an unconstrained max-min problem . In the Lagrange Dual Ascent Method, the variable x and the Lagrangian multiplier coefficient are alternately updated. Note that when the background color changes, the Lagrangian multiplier started to be taken into consideration during the updates.

Augmented Lagrangian Method (ALM). ALM is designed based on the Lagrange Dual Ascent Method by adding a penalty function as Augmented Lagrangian multipliers. ALM is more robust at ill-conditioned regions, e.g., at the boundary of constraints.

"keep Calm and Don't Overfit."

Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
eoplatform is a Python package that aims to simplify Remote Sensing Earth Observation by providing actionable information on a wide swath of RS platforms and provide a simple API for downloading and visualizing RS imagery

An Earth Observation Platform Earth Observation made easy. Report Bug | Request Feature About eoplatform is a Python package that aims to simplify Rem

Matthew Tralka 4 Aug 11, 2022
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021
Python Data Validation for Humans™.

validators Python data validation for Humans. Python has all kinds of data validation tools, but every one of them seems to require defining a schema

Konsta Vesterinen 670 Jan 09, 2023
Rockstar - Makes you a Rockstar C++ Programmer in 2 minutes

Rockstar Rockstar is one amazing library, which will make you a Rockstar Programmer in just 2 minutes. In last decade, people learned C++ in 21 days.

4k Jan 05, 2023
Investment and risk technologies maintained by Fortitudo Technologies.

Fortitudo Technologies Open Source This package allows you to freely explore open-source implementations of some of our fundamental technologies under

Fortitudo Technologies 11 Dec 14, 2022
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
Visualize and compare datasets, target values and associations, with one line of code.

In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat

Francois Bertrand 2.3k Jan 05, 2023
D-Analyst : High Performance Visualization Tool

D-Analyst : High Performance Visualization Tool D-Analyst is a high performance data visualization built with python and based on OpenGL. It allows to

4 Apr 14, 2022
Generate a 3D Skyline in STL format and a OpenSCAD file from Gitlab contributions

Your Gitlab's contributions in a 3D Skyline gitlab-skyline is a Python command to generate a skyline figure from Gitlab contributions as Github did at

FĂŠlix GĂłmez 70 Dec 22, 2022
A simple script that displays pixel-based animation on GitHub Activity

GitHub Activity Animator This project contains a simple Javascript snippet that produces an animation on your GitHub activity tracker. The project als

16 Nov 15, 2021
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
Data Visualizer Web-Application

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

Sagnik Roy 17 Nov 20, 2022
Compute and visualise incidence (reworking of the original incidence package)

incidence2 incidence2 is an R package that implements functions and classes to compute, handle and visualise incidence from linelist data. It refocuss

15 Nov 22, 2022
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.3k Dec 27, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Open Stats Discover and share the KPIs of your OpenSource project. OpenStats is a library built on top of streamlit that extracts data from the Github

Pere Miquel Brull 4 Apr 03, 2022
Apache Superset is a Data Visualization and Data Exploration Platform

Superset A modern, enterprise-ready business intelligence web application. Why Superset? | Supported Databases | Installation and Configuration | Rele

The Apache Software Foundation 50k Jan 06, 2023
erdantic is a simple tool for drawing entity relationship diagrams (ERDs) for Python data model classes

erdantic is a simple tool for drawing entity relationship diagrams (ERDs) for Python data model classes. Diagrams are rendered using the venerable Graphviz library.

DrivenData 129 Jan 04, 2023