Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Overview

Volumetric TSDF Fusion of RGB-D Images in Python

This is a lightweight python script that fuses multiple registered color and depth images into a projective truncated signed distance function (TSDF) volume, which can then be used to create high quality 3D surface meshes and point clouds. Tested on Ubuntu 16.04.

An older CUDA/C++ version can be found here.

Requirements

  • Python 2.7+ with NumPy, PyCUDA, OpenCV, Scikit-image and Numba. These can be quickly installed/updated by running the following:
    pip install --user numpy opencv-python scikit-image numba
  • [Optional] GPU acceleration requires an NVIDA GPU with CUDA and PyCUDA:
    pip install --user pycuda

Demo

This demo fuses 1000 RGB-D images from the 7-scenes dataset into a 405 x 264 x 289 projective TSDF voxel volume with 2cm resolution at about 30 FPS in GPU mode (0.4 FPS in CPU mode), and outputs a 3D mesh mesh.ply which can be visualized with a 3D viewer like Meshlab.

Note: color images are saved as 24-bit PNG RGB, depth images are saved as 16-bit PNG in millimeters.

python demo.py

Seen In

References

Citing

This repository is a part of 3DMatch Toolbox. If you find this code useful in your work, please consider citing:

@inproceedings{zeng20163dmatch,
    title={3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions},
    author={Zeng, Andy and Song, Shuran and Nie{\ss}ner, Matthias and Fisher, Matthew and Xiao, Jianxiong and Funkhouser, Thomas},
    booktitle={CVPR},
    year={2017}
}
Owner
Andy Zeng
Research Scientist in Robotics at Google Brain working on AI
Andy Zeng
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Namish Khanna 40 Oct 11, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022