Package towards building Explainable Forecasting and Nowcasting Models with State-of-the-art Deep Neural Networks and Dynamic Factor Model on Time Series data sets with single line of code. Also, provides utilify facility for time-series signal similarities matching, and removing noise from timeseries signals.

Overview

DeepXF: Explainable Forecasting and Nowcasting with State-of-the-art Deep Neural Networks and Dynamic Factor Model

Also, verify TS signal similarities and Filtering of TS signals with single line of code at ease

deep-xf

pypi: https://pypi.org/project/deep_xf

images/logo.png

Related Blog: https://towardsdatascience.com/interpretable-nowcasting-with-deepxf-using-minimal-code-6b16a76ca52f

Related Blog: https://medium.com/analytics-vidhya/building-explainable-forecasting-models-with-state-of-the-art-deep-neural-networks-using-a-ad3fa5844fef

Related Blog: https://towardsdatascience.com/learning-similarities-between-biomedical-signals-with-deep-siamese-network-7684648e2ba0

Related Blog: https://ajay-arunachalam08.medium.com/denoising-ecg-signals-with-ensemble-of-filters-65919d15afe9

About deep-xf

DeepXF is an open source, low-code python library for forecasting and nowcasting tasks. DeepXF helps in designing complex forecasting and nowcasting models with built-in utility for time series data. One can automatically build interpretable deep forecasting and nowcasting models at ease with this simple, easy-to-use and low-code solution. It enables users to perform end-to-end Proof-Of-Concept (POC) quickly and efficiently. One can build models based on deep neural network such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional RNN/LSTM/GRU (BiRNN/BiLSTM/BiGRU), Spiking Neural Network (SNN), Graph Neural Network (GNN), Transformers, Generative Adversarial Network (GAN), Convolutional Neural Network (CNN), and others. It also provides facility to build nowcast model using Dynamic Factor Model.

images/representation.png

DeepXF is conceived and developed by Ajay Arunachalam - https://www.linkedin.com/in/ajay-arunachalam-4744581a/

Please Note:- This is still by large a work in progress, so always open to your comments and things you feel to be included. Also, if you want to be a contributor, you are always most welcome. The RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU are already part of the initial version roll-out, while the latter ones (SNN, GNN, Transformers, GAN, CNN, etc.) are work in progress, and will be added soon once the testing is completed.

The library provides (not limited too):-

  • Exploratory Data Analysis with services like profiling, filtering outliers, univariate/multivariate plots, plotly interactive plots, rolling window plots, detecting peaks, etc.
  • Data Preprocessing for Time-series data with services like finding missing, imputing missing, date-time extraction, single timestamp generation, removing unwanted features, etc.
  • Descriptive statistics for the provided time-series data, Normality evaluation, etc.
  • Feature engineering with services like generating time lags, date-time features, one-hot encoding, date-time cyclic features, etc.
  • Finding similarity between homogeneous time-series inputs with Siamese Neural Networks.
  • Denoising time-series input signals.
  • Building Deep Forecasting Model with hyperparameters tuning and leveraging available computational resource (CPU/GPU).
  • Forecasting model performance evaluation with several key metrics
  • Game theory based method to interpret forecasting model results.
  • Building Nowcasting model with Expectation–maximization algorithm
  • Explainable Nowcasting

Who can use deep-xf?

DeepXF is an open-source library ideal for:-

  • Citizen Data Scientists who prefer a low code solution.
  • Experienced Data Scientists who want to increase model accuracy and improve productivity.
  • Data Science Professionals and Consultants involved in building proof-of-concept (poc) projects.
  • Researchers for quick poc prototyping and testing.
  • Students and Teachers.
  • ML Enthusiasts.
  • Learners.

Requirements

  • Python 3.6.x
  • torch[>=1.4.0]
  • NumPy[>=1.9.0]
  • SciPy[>=0.14.0]
  • Scikit-learn[>=0.16]
  • statsmodels[0.12.2]
  • Pandas[>=0.23.0]
  • Matplotlib
  • Seaborn[0.9.0]
  • tqdm
  • shap
  • keras[2.6.0]
  • pandas_profiling[3.1.0]
  • py-ecg-detectors

Quickly Setup package with automation scripts

sudo bash setup.sh

Installation

Using pip:

pip install deep-xf or pip3 install deep-xf or pip install git+git://github.com/ajayarunachalam/Deep_XF
$ git clone https://github.com/ajayarunachalam/Deep_XF
$ cd Deep_XF
$ python setup.py install

Using notebook:

!pip install deep-xf

Using conda:

$ conda install -c conda-forge deep-xf

Getting started

  • FORECASTING DEMO:
# set model config
select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='rnn', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=1)

# select hyperparameters
hidden_dim, layer_dim, batch_size, dropout, n_epochs, learning_rate, weight_decay = Forecast.hyperparameter_config(hidden_dim=64,                                                                                                                                                               layer_dim = 3, batch_size=64, dropout = 0.2,                                                                                                                                    n_epochs = 30, learning_rate = 1e-3, weight_decay = 1e-6)

# train model
opt, scaler = Forecast.train(df=df_full_features, target_col='value', split_ratio=0.2, select_model=select_model,              select_scaler=select_scaler, forecast_window=forecast_window, batch_size=batch_size, hidden_dim=hidden_dim, layer_dim=layer_dim,dropout=dropout, n_epochs=n_epochs, learning_rate=learning_rate, weight_decay=weight_decay)

# forecast for user selected period
forecasted_data, ff_full_features, ff_full_features_ = Forecast.forecast(model_df, ts, fc, opt, scaler, period=25, fq='1h', select_scaler=select_scaler,)

# interpret the forecasting result
Helper.explainable_forecast(df_full_features, ff_full_features_, fc, specific_prediction_sample_to_explain=df_full_features.shape[0]+2, input_label_index_value=0, num_labels=1)

Example Illustration

__author__ = 'Ajay Arunachalam'
__version__ = '0.0.1'
__date__ = '7.11.2021'


    from deep_xf.main import *
    from deep_xf.dpp import *
    from deep_xf.forecast_ml import *
    from deep_xf.forecast_ml_extension import *
    from deep_xf.stats import *
    from deep_xf.utility import *
    from deep_xf.denoise import *
    from deep_xf.similarity import *
    df = pd.read_csv('../data/PJME_hourly.csv')
    print(df.shape)
    print(df.columns)
    # set variables
    ts, fc = Forecast.set_variable(ts='Datetime', fc='PJME_MW')
    # get variables
    model_df, orig_df = Helper.get_variable(df, ts, fc)
    # EDA
    ExploratoryDataAnalysis.plot_dataset(df=model_df,fc=fc, title='PJM East (PJME) Region: estimated energy consumption in Megawatts (MW)')
    # Feature Engg
    df_full_features = Features.generate_date_time_features_hour(model_df, ['hour','month','day','day_of_week','week_of_year'])
    # generating cyclic features
    df_full_features = Features.generate_cyclic_features(df_full_features, 'hour', 24, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'day_of_week', 7, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'month', 12, 1)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'week_of_year', 52, 0)
    # holiday feature
    df_full_features = Features.generate_other_related_features(df=df_full_features)
    select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='rnn', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=1)

    hidden_dim, layer_dim, batch_size, dropout, n_epochs, learning_rate, weight_decay = Forecast.hyperparameter_config(hidden_dim=64,                                                                                                                                                               layer_dim = 3, batch_size=64, dropout = 0.2,                                                                                                                                    n_epochs = 30, learning_rate = 1e-3, weight_decay = 1e-6)

    opt, scaler = Forecast.train(df=df_full_features, target_col='value', split_ratio=0.2, select_model=select_model,              select_scaler=select_scaler, forecast_window=forecast_window, batch_size=batch_size, hidden_dim=hidden_dim, layer_dim=layer_dim,dropout=dropout, n_epochs=n_epochs, learning_rate=learning_rate, weight_decay=weight_decay)

    forecasted_data, ff_full_features, ff_full_features_ = Forecast.forecast(model_df, ts, fc, opt, scaler, period=25, fq='1h', select_scaler=select_scaler,)

    Helper.explainable_forecast(df_full_features, ff_full_features_, fc, specific_prediction_sample_to_explain=df.shape[0]+1, input_label_index_value=0, num_labels=1)
  • NOWCASTING DEMO:
# set model config
select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='em', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=5)

# nowcast for user selected window
nowcast_full_data, nowcast_pred_data = EMModel.nowcast(df_full_features, ts, fc, period=5, fq='1h', forecast_window=forecast_window,    select_model=select_model)

# interpret the nowcasting model result
EMModel.explainable_nowcast(df_full_features, nowcast_pred_data, fc, specific_prediction_sample_to_explain=df.shape[0]+2, input_label_index_value=0, num_labels=1)

Example Illustration

__author__ = 'Ajay Arunachalam'
__version__ = '0.0.1'
__date__ = '7.11.2021'

    from deep_xf.main import *
    from deep_xf.dpp import *
    from deep_xf.forecast_ml import *
    from deep_xf.forecast_ml_extension import *
    from deep_xf.stats import *
    from deep_xf.utility import *
    from deep_xf.denoise import *
    from deep_xf.similarity import *
    df = pd.read_csv('./data/PJME_hourly.csv')
    # set variables
    ts, fc = Forecast.set_variable(ts='Datetime', fc='PJME_MW')
    # get variables
    model_df, orig_df = Helper.get_variable(df, ts, fc)
    select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='em', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=5)
    df_full_features = Features.generate_date_time_features_hour(model_df, ['hour','month','day','day_of_week','week_of_year'])
    # generating cyclic features
    df_full_features = Features.generate_cyclic_features(df_full_features, 'hour', 24, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'day_of_week', 7, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'month', 12, 1)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'week_of_year', 52, 0)
    df_full_features = Features.generate_other_related_features(df=df_full_features)
    nowcast_full_data, nowcast_pred_data = EMModel.nowcast(df_full_features, ts, fc, period=5, fq='1h', forecast_window=forecast_window, select_model=select_model)
    EMModel.explainable_nowcast(df_full_features, nowcast_pred_data, fc, specific_prediction_sample_to_explain=df.shape[0]+3, input_label_index_value=0, num_labels=1)

Tested Demo

## Important Links

License

Copyright 2021-2022 Ajay Arunachalam <[email protected]>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. © 2021 GitHub, Inc.

Owner
AjayAru
Data Science Manager; Certified Scrum Master; AWS Certified Cloud Solution Architect; AWS Certified Machine Learning Specialist
AjayAru
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022