Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Overview

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

The performances of tree ensembles and neural networks on structured data are evaluated. In addition, the effectiveness of combining neural network and decision trees (such as random trees, histogram based gradient boosting, and xgboost) is investigated. Covariant shift, Random forest's inability to extrapolate, and data leakage are investigated.

A simple 2-layer Neural network outperformed xgboost, followed by random forests. The worst performance based on RMSE was obtained from the histogram based gradient boosting regressor.

Overall, the best rmse (0.220194)--about 4.04% improvement over the kaggle's leaderboard first place score -- was obtained by taking the average of the predictions by the neural network and xgboost regressor.

Key takeaways:

  1. Always start with a baseline

  2. Random forests are generally bad at extrapolating, hence, if there is a shift in the domain between the training input and the validation (or test) inputs, then the random forest model will perform rather poorly on the validation set(or test set).

rf_failure

The red portion of the plot above shows the extrapolation problem. The random forest was trained on the first 70% of the data and used to make predictions on thr full data including the last 30%. It fails because there is an obvious linear trend it was unable to properly capture. Moreover, the predictions by random forests are confined within the range of the training input labels, since random forests make predictions by taking the average of previously observed data. Hence, when the input for prediction is

  1. To improve the performance of random forests, you could attempt to find the columns or features on which the training and validation sets differ the most. You may drop the ones that least impacts the accuracy of the model. To achieve this, I trained a random forest that can tell if a given input is from a training set or validation set. This helped me determine if a validation set has the same or similar distribution as the training set. Lastly, I computed the feature importances. The feature importances for this model revealed the degree of dissimilarity of the features between the training and validation sets. The features with high feature importances are the most dissimilar between the sets. salesID and machineID were significantly different between the sets but impacts RMSE the least, hence they were dropped. Other common approaches taken to improve performance include: finding and removing the redundant features by making similarity plot (shown below), choosing more recent data for both the training and the validation sets.

similarity plot

  1. For forecasting tasks (time dependent targets), the validation set should not be arbitrarily chosen i.e train_test_split may not be your best option for splitting the data. Since you are looking to make predictions on future sales, your validation set should contain more recent data, so that if your model is able to do well on the validation set, then, you can be more confident about its predictions in the future.

  2. Data leakage should be investigated. Signs of data leakage include:

    • Unrealistically high level of performance on the test set
    • Apparently meaningless feature(s) scoring very high on feature importance
    • Partial dependence plots that do not make sense.

popularitypartial_dependence

Observations extracted from the notebook*

Towards the end of the productsize plot, we see an interesting trend. The auction price is at its lowest in the end. This group represent the missing values in our product size. Missing values constitute the greatest percentage in our ProductSize. However, recall that productsize is our third most important feature. So, how is it possible that a feature that is missing so often could be so important to the prediction? The answer may be tied to data leakage. We can theorize that the auctions with missing product size information were not really successful since they were sold at very low prices, as a resutlt, the size information were either removed or intentionally omitted. It is also possible that most of these data were collected after sales were made, and for the sales that were not great, the product size were simply left blank. The intention is completely debatable, it might be intended to provide clue as to the nature of the sale, however, such information can harm our model or even render it completely useless. Clearly, our model could be misled into thinking that missing product size is an indication of low price and as such will always predict a low price whenever the product size attribute is missing. A model afflicted with data leakage will not perform well in production.

  1. An histogram based gradient boosting regressor may not be the best for forecasting on time dependent data. It showed the least peroformance with an RMSE of 0.239826

  2. A simple Neural network can show superior performance on structured data. A 2-layer neural network in which the categorical variables (i.e features with cardinality < 1000) were handled using embeddings showed a 1.93% improvement in RMSE compared to the best random forest model. It also outperformed the xgboost regressor even after the hyperparameters were tuned.

  3. There is some benefit to be derived by using an ensemble of models. In this project, each time, the neural network was combined with any of the trees, a superior performance always ensues. The best performance was obtained from the combination of neural network and the xgboost model.

Owner
Mustapha Unubi Momoh
Python Developer| Data scientist
Mustapha Unubi Momoh
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022