Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

mapomatic

Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

One of the main painpoints in executing circuits on IBM Quantum hardware is finding the best qubit mapping. For a given circuit, one typically tries to pick the best initial_layout for a given target system, and then SWAP maps using that set of qubits as the starting point. However there are a couple of issues with that execution model. First, an initial_layout seletected, for example with respect to the noise characteristics of the system, need not be optimal for the SWAP mapping. In practice this leads to either low-noise layouts with extra SWAP gates inserted in the circuit, or optimally SWAP mapped circuits on (possibly) lousy qubits. Second, there is no way to know if the system you targeted in the compilation is actually the best one to execute the compiled circuit on. With 20+ quantum systems, it is hard to determine which device is actually ideal for a given problem.

mapomatic tries to tackle these issues in a different way. mapomatic is a post-compilation routine that finds the best low noise sub-graph on which to run a circuit given one or more quantum systems as target devices. Once compiled, a circuit has been rewritten so that its two-qubit gate structure matches that of a given sub-graph on the target system. mapomatic then searches for matching sub-graphs using the VF2 mapper in Qiskit (retworkx actually), and uses a heuristic to rank them based on error rates determined by the current calibration data. That is to say that given a single target system, mapomatic will return the best set of qubits on which to execute the compiled circuit. Or, given a list of systems, it will find the best system and set of qubits on which to run your circuit. Given the current size of quantum hardware, and the excellent performance of the VF2 mapper, this whole process is actually very fast.

Usage

To begin we first import what we need and load our IBM Quantum account.

import numpy as np
from qiskit import *
import mapomatic as mm

IBMQ.load_account()

Second we will select a provider that has one or more systems of interest in it:

provider = IBMQ.get_provider(group='deployed')

We then go through the usual step of making a circuit and calling transpile on a given backend:

qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.cx(0,3)
qc.cx(0,4)
qc.measure_all()

Here we use optimization_level=3 as it is the best overall. It is also not noise-aware though, and thus can select lousy qubits on which to do a good SWAP mapping

trans_qc = transpile(qc, provider.get_backend('ibm_auckland'),optimization_level=3)

Now, a call to transpile inflates the circuit to the number of qubits in the target system. For small problems like the example here, this prevents us from finding the smaller sub-graphs. Thus we need to deflate the circuit down to just the number of active qubits:

small_qc = mm.deflate_circuit(trans_qc)

This deflated circuit, along with one or more backends can now be used to find the ideal system and mapping. Here we will look over all systems in the provider:

backends = provider.backends()

mm.best_mapping(small_qc, backends)

that returns a tuple with the target layout, system, and the computed error score:

([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036)

You can then use the best layout in a new call to transpile which will then do the desired mapping for you. Alternatively, we can ask for the best mapping on all systems, yielding a list sorted in order from best to worse:

mm.best_mapping(small_qc, backends, successors=True)
[([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036),
 ([7, 10, 4, 1, 0], 'ibm_hanoi', 0.11217956761629977),
 ([5, 6, 3, 1, 2], 'ibm_lagos', 0.1123755285308975),
 ([7, 6, 10, 12, 15], 'ibmq_mumbai', 0.13708593236124922),
 ([3, 2, 5, 8, 9], 'ibmq_montreal', 0.13762962991865924),
 ([2, 1, 3, 5, 8], 'ibm_cairo', 0.1423752001642351),
 ([1, 2, 3, 5, 6], 'ibmq_casablanca', 0.15623594190953083),
 ([4, 3, 5, 6, 7], 'ibmq_brooklyn', 0.16468576058762707),
 ([7, 6, 10, 12, 15], 'ibmq_guadalupe', 0.17186581811649904),
 ([5, 3, 8, 11, 14], 'ibmq_toronto', 0.1735555283027388),
 ([5, 4, 3, 1, 0], 'ibmq_jakarta', 0.1792325518776976),
 ([2, 3, 1, 0, 14], 'ibm_washington', 0.2078576175452339),
 ([1, 0, 2, 3, 4], 'ibmq_bogota', 0.23973220166838316),
 ([1, 2, 3, 5, 6], 'ibm_perth', 0.31268969778002176),
 ([3, 4, 2, 1, 0], 'ibmq_manila', 0.3182338194159915),
 ([1, 0, 2, 3, 4], 'ibmq_santiago', 1.0)]

Because of the stochastic nature of the SWAP mapping, the optimal sub-graph may change over repeated compilations.

Getting optimal results

Because the SWAP mappers in Qiskit are stochastic, the number of inserted SWAP gates can vary with each run. The spread in this number can be quite large, and can impact the performance of your circuit. It is thus beneficial to transpile many instances of a circuit and take the best one. For example:

trans_qc_list = transpile([qc]*20, provider.get_backend('ibm_auckland'), optimization_level=3)

best_cx_count = [circ.count_ops()['cx'] for circ in trans_qc_list]
best_cx_count
[10, 13, 10, 7, 7, 10, 10, 7, 10, 7, 10, 10, 10, 10, 5, 7, 6, 13, 7, 10]

We obviously want the one with minimum CNOT gates here:

best_idx = np.where(best_cx_count == np.min(best_cx_count))[0][0]
best_qc = trans_qc_list[best_idx] 

We can then use this best mapped circuit to find the ideal qubit candidates via mapomatic.

best_small_qc = mm.deflate_circuit(best_qc)
mm.best_mapping(best_small_qc, backends, successors=True)
[([11, 13, 14, 16, 19], 'ibm_auckland', 0.07634155667667142),
 ([2, 0, 1, 4, 7], 'ibm_hanoi', 0.0799012562006044),
 ([4, 6, 5, 3, 1], 'ibm_lagos', 0.09374259142721897),
 ([10, 15, 12, 13, 14], 'ibm_cairo', 0.0938958618334792),
 ([5, 9, 8, 11, 14], 'ibmq_montreal', 0.09663069814643488),
 ([10, 6, 7, 4, 1], 'ibmq_mumbai', 0.10253149958591112),
 ([10, 15, 12, 13, 14], 'ibmq_guadalupe', 0.11075230351892806),
 ([11, 5, 4, 3, 2], 'ibmq_brooklyn', 0.13179514610612808),
 ([0, 2, 1, 3, 5], 'ibm_perth', 0.13309987649094324),
 ([4, 6, 5, 3, 1], 'ibmq_casablanca', 0.13570907147053013),
 ([2, 0, 1, 3, 5], 'ibmq_jakarta', 0.14449169384159954),
 ([5, 9, 8, 11, 14], 'ibmq_toronto', 0.1495199193756318),
 ([2, 0, 1, 3, 4], 'ibmq_quito', 0.16858894163955718),
 ([0, 2, 1, 3, 4], 'ibmq_belem', 0.1783430267967986),
 ([0, 2, 1, 3, 4], 'ibmq_lima', 0.20380730100751476),
 ([23, 25, 24, 34, 43], 'ibm_washington', 0.23527393065514557)]
Owner
Qiskit Partners
Qiskit Partners
An interactive GUI for WhiteboxTools in a Jupyter-based environment

whiteboxgui An interactive GUI for WhiteboxTools in a Jupyter-based environment GitHub repo: https://github.com/giswqs/whiteboxgui Documentation: http

Qiusheng Wu 105 Dec 15, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Visualizations of linear algebra algorithms for people who want a deep understanding

Visualising algorithms on symmetric matrices Examples QR algorithm and LR algorithm Here, we have a GIF animation of an interactive visualisation of t

ogogmad 3 May 05, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Glumpy 1.1k Jan 05, 2023
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
Small U-Net for vehicle detection

Small U-Net for vehicle detection Vivek Yadav, PhD Overview In this repository , we will go over using U-net for detecting vehicles in a video stream

Vivek Yadav 91 Nov 03, 2022
Histogramming for analysis powered by boost-histogram

Hist Hist is an analyst-friendly front-end for boost-histogram, designed for Python 3.7+ (3.6 users get version 2.4). See what's new. Installation You

Scikit-HEP Project 97 Dec 25, 2022
A minimal Python package that produces slice plots through h5m DAGMC geometry files

A minimal Python package that produces slice plots through h5m DAGMC geometry files Installation pip install dagmc_geometry_slice_plotter Python API U

Fusion Energy 4 Dec 02, 2022
Missing data visualization module for Python.

missingno Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities tha

Aleksey Bilogur 3.4k Dec 29, 2022
Generate knowledge graphs with interesting geometries, like lattices

Geometric Graphs Generate knowledge graphs with interesting geometries, like lattices. Works on Python 3.9+ because it uses cool new features. Get out

Charles Tapley Hoyt 5 Jan 03, 2022
By default, networkx has problems with drawing self-loops in graphs.

By default, networkx has problems with drawing self-loops in graphs. It makes it hard to draw a graph with self-loops or to make a nicely looking chord diagram. This repository provides some code to

Vladimir Shitov 5 Jan 06, 2022
Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts

Data-FX Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts Currently, there are only 2 chart option

Landon Ferguson 20 Nov 21, 2022
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
Collection of scripts for making high quality beautiful math-related posters.

Poster Collection of scripts for making high quality beautiful math-related posters. The poster can have as large printing size as 3x2 square feet wit

Nattawut Phetmak 3 Jun 09, 2022
A visualization tool made in Pygame for various pathfinding algorithms.

Pathfinding-Visualizer 🚀 A visualization tool made in Pygame for various pathfinding algorithms. Pathfinding is closely related to the shortest path

Aysha sana 7 Jul 09, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022