Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

mapomatic

Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

One of the main painpoints in executing circuits on IBM Quantum hardware is finding the best qubit mapping. For a given circuit, one typically tries to pick the best initial_layout for a given target system, and then SWAP maps using that set of qubits as the starting point. However there are a couple of issues with that execution model. First, an initial_layout seletected, for example with respect to the noise characteristics of the system, need not be optimal for the SWAP mapping. In practice this leads to either low-noise layouts with extra SWAP gates inserted in the circuit, or optimally SWAP mapped circuits on (possibly) lousy qubits. Second, there is no way to know if the system you targeted in the compilation is actually the best one to execute the compiled circuit on. With 20+ quantum systems, it is hard to determine which device is actually ideal for a given problem.

mapomatic tries to tackle these issues in a different way. mapomatic is a post-compilation routine that finds the best low noise sub-graph on which to run a circuit given one or more quantum systems as target devices. Once compiled, a circuit has been rewritten so that its two-qubit gate structure matches that of a given sub-graph on the target system. mapomatic then searches for matching sub-graphs using the VF2 mapper in Qiskit (retworkx actually), and uses a heuristic to rank them based on error rates determined by the current calibration data. That is to say that given a single target system, mapomatic will return the best set of qubits on which to execute the compiled circuit. Or, given a list of systems, it will find the best system and set of qubits on which to run your circuit. Given the current size of quantum hardware, and the excellent performance of the VF2 mapper, this whole process is actually very fast.

Usage

To begin we first import what we need and load our IBM Quantum account.

import numpy as np
from qiskit import *
import mapomatic as mm

IBMQ.load_account()

Second we will select a provider that has one or more systems of interest in it:

provider = IBMQ.get_provider(group='deployed')

We then go through the usual step of making a circuit and calling transpile on a given backend:

qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.cx(0,3)
qc.cx(0,4)
qc.measure_all()

Here we use optimization_level=3 as it is the best overall. It is also not noise-aware though, and thus can select lousy qubits on which to do a good SWAP mapping

trans_qc = transpile(qc, provider.get_backend('ibm_auckland'),optimization_level=3)

Now, a call to transpile inflates the circuit to the number of qubits in the target system. For small problems like the example here, this prevents us from finding the smaller sub-graphs. Thus we need to deflate the circuit down to just the number of active qubits:

small_qc = mm.deflate_circuit(trans_qc)

This deflated circuit, along with one or more backends can now be used to find the ideal system and mapping. Here we will look over all systems in the provider:

backends = provider.backends()

mm.best_mapping(small_qc, backends)

that returns a tuple with the target layout, system, and the computed error score:

([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036)

You can then use the best layout in a new call to transpile which will then do the desired mapping for you. Alternatively, we can ask for the best mapping on all systems, yielding a list sorted in order from best to worse:

mm.best_mapping(small_qc, backends, successors=True)
[([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036),
 ([7, 10, 4, 1, 0], 'ibm_hanoi', 0.11217956761629977),
 ([5, 6, 3, 1, 2], 'ibm_lagos', 0.1123755285308975),
 ([7, 6, 10, 12, 15], 'ibmq_mumbai', 0.13708593236124922),
 ([3, 2, 5, 8, 9], 'ibmq_montreal', 0.13762962991865924),
 ([2, 1, 3, 5, 8], 'ibm_cairo', 0.1423752001642351),
 ([1, 2, 3, 5, 6], 'ibmq_casablanca', 0.15623594190953083),
 ([4, 3, 5, 6, 7], 'ibmq_brooklyn', 0.16468576058762707),
 ([7, 6, 10, 12, 15], 'ibmq_guadalupe', 0.17186581811649904),
 ([5, 3, 8, 11, 14], 'ibmq_toronto', 0.1735555283027388),
 ([5, 4, 3, 1, 0], 'ibmq_jakarta', 0.1792325518776976),
 ([2, 3, 1, 0, 14], 'ibm_washington', 0.2078576175452339),
 ([1, 0, 2, 3, 4], 'ibmq_bogota', 0.23973220166838316),
 ([1, 2, 3, 5, 6], 'ibm_perth', 0.31268969778002176),
 ([3, 4, 2, 1, 0], 'ibmq_manila', 0.3182338194159915),
 ([1, 0, 2, 3, 4], 'ibmq_santiago', 1.0)]

Because of the stochastic nature of the SWAP mapping, the optimal sub-graph may change over repeated compilations.

Getting optimal results

Because the SWAP mappers in Qiskit are stochastic, the number of inserted SWAP gates can vary with each run. The spread in this number can be quite large, and can impact the performance of your circuit. It is thus beneficial to transpile many instances of a circuit and take the best one. For example:

trans_qc_list = transpile([qc]*20, provider.get_backend('ibm_auckland'), optimization_level=3)

best_cx_count = [circ.count_ops()['cx'] for circ in trans_qc_list]
best_cx_count
[10, 13, 10, 7, 7, 10, 10, 7, 10, 7, 10, 10, 10, 10, 5, 7, 6, 13, 7, 10]

We obviously want the one with minimum CNOT gates here:

best_idx = np.where(best_cx_count == np.min(best_cx_count))[0][0]
best_qc = trans_qc_list[best_idx] 

We can then use this best mapped circuit to find the ideal qubit candidates via mapomatic.

best_small_qc = mm.deflate_circuit(best_qc)
mm.best_mapping(best_small_qc, backends, successors=True)
[([11, 13, 14, 16, 19], 'ibm_auckland', 0.07634155667667142),
 ([2, 0, 1, 4, 7], 'ibm_hanoi', 0.0799012562006044),
 ([4, 6, 5, 3, 1], 'ibm_lagos', 0.09374259142721897),
 ([10, 15, 12, 13, 14], 'ibm_cairo', 0.0938958618334792),
 ([5, 9, 8, 11, 14], 'ibmq_montreal', 0.09663069814643488),
 ([10, 6, 7, 4, 1], 'ibmq_mumbai', 0.10253149958591112),
 ([10, 15, 12, 13, 14], 'ibmq_guadalupe', 0.11075230351892806),
 ([11, 5, 4, 3, 2], 'ibmq_brooklyn', 0.13179514610612808),
 ([0, 2, 1, 3, 5], 'ibm_perth', 0.13309987649094324),
 ([4, 6, 5, 3, 1], 'ibmq_casablanca', 0.13570907147053013),
 ([2, 0, 1, 3, 5], 'ibmq_jakarta', 0.14449169384159954),
 ([5, 9, 8, 11, 14], 'ibmq_toronto', 0.1495199193756318),
 ([2, 0, 1, 3, 4], 'ibmq_quito', 0.16858894163955718),
 ([0, 2, 1, 3, 4], 'ibmq_belem', 0.1783430267967986),
 ([0, 2, 1, 3, 4], 'ibmq_lima', 0.20380730100751476),
 ([23, 25, 24, 34, 43], 'ibm_washington', 0.23527393065514557)]
Owner
Qiskit Partners
Qiskit Partners
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
A deceptively simple plotting library for Streamlit

🍅 Plost A deceptively simple plotting library for Streamlit. Because you've been writing plots wrong all this time. Getting started pip install plost

Thiago Teixeira 192 Dec 29, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Rubrix is a free and open-source tool for exploring and iterating on data for artificial intelligence projects.

Open-source tool for exploring, labeling, and monitoring data for AI projects

Recognai 1.5k Jan 07, 2023
Python wrapper for Synoptic Data API. Retrieve data from thousands of mesonet stations and networks. Returns JSON from Synoptic as Pandas DataFrame

☁ Synoptic API for Python (unofficial) The Synoptic Mesonet API (formerly MesoWest) gives you access to real-time and historical surface-based weather

Brian Blaylock 23 Jan 06, 2023
The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

Timescale NFT Starter Kit The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualiz

Timescale 102 Dec 24, 2022
PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

PolytopeSampler PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disrib

9 Sep 26, 2022
Mathematical learnings with Lean, for those of us who wish we knew more of both!

Lean for the Inept Mathematician This repository contains source files for a number of articles or posts aimed at explaining bite-sized mathematical c

Julian Berman 8 Feb 14, 2022
Attractors is a package for simulation and visualization of strange attractors.

attractors Attractors is a package for simulation and visualization of strange attractors. Installation The simplest way to install the module is via

Vignesh M 45 Jul 31, 2022
Python package that generates hardware pinout diagrams as SVG images

PinOut A Python package that generates hardware pinout diagrams as SVG images. The package is designed to be quite flexible and works well for general

336 Dec 20, 2022
Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Average-Death-Rate Displaying plot of death rates from past years in Poland The goal collect the data from a CSV file count the ADR (Average Death Rat

Oliwier Szymański 0 Sep 12, 2021
A data visualization curriculum of interactive notebooks.

A data visualization curriculum of interactive notebooks, using Vega-Lite and Altair. This repository contains a series of Python-based Jupyter notebooks.

UW Interactive Data Lab 1.2k Dec 30, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python

Petrel Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python. NOTE: The base Storm package provides storm.py, which

AirSage 247 Dec 18, 2021
Browse Dash docsets inside emacs

Helm Dash What's it This package uses Dash docsets inside emacs to browse documentation. Here's an article explaining the basic usage of it. It doesn'

504 Dec 15, 2022
Type-safe YAML parser and validator.

StrictYAML StrictYAML is a type-safe YAML parser that parses and validates a restricted subset of the YAML specification. Priorities: Beautiful API Re

Colm O'Connor 1.2k Jan 04, 2023
Python script for writing text on github contribution chart.

Github Contribution Drawer Python script for writing text on github contribution chart. Requirements Python 3.X Getting Started Create repository Put

Steven 0 May 27, 2022
This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds

This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds. Inspired by the work of Edward Tufte.

Nico Schlömer 205 Jan 07, 2023
eoplatform is a Python package that aims to simplify Remote Sensing Earth Observation by providing actionable information on a wide swath of RS platforms and provide a simple API for downloading and visualizing RS imagery

An Earth Observation Platform Earth Observation made easy. Report Bug | Request Feature About eoplatform is a Python package that aims to simplify Rem

Matthew Tralka 4 Aug 11, 2022
paintable GitHub contribute table

githeart paintable github contribute table how to use: Functions key color select 1,2,3,4,5 clear c drawing mode mode on turn off e print paint matrix

Bahadır Araz 27 Nov 24, 2022