Customizable RecSys Simulator for OpenAI Gym

Overview

gym-recsys: Customizable RecSys Simulator for OpenAI Gym

Installation | How to use | Examples | Citation

This package describes an OpenAI Gym interface for creating a simulation environment of reinforcement learning-based recommender systems (RL-RecSys). The design strives for simple and flexible APIs to support novel research.

Installation

gym-recsys can be installed from PyPI using pip:

pip install gym-recsys

Note that we support Python 3.7+ only.

You can also install it directly from this GitHub repository using pip:

pip install git+git://github.com/zuoxingdong/gym-recsys.git

How to use

To use gym-recsys, you need to define the following components:

user_ids

This describes a list of available user IDs for the simulation. Normally, a user ID is an integer.

An example of three users: user_ids = [0, 1, 2]

Note that the user ID will be taken as an input to user_state_model_callback to generate observations of the user state.

item_category

This describes the categories of a list of available items. The data type should be a list of strings. The indices of the list is assumed to correspond to item IDs.

An example of three items: item_category = ['sci-fi', 'romance', 'sci-fi']

The category information is mainly used for visualization via env.render().

item_popularity

This describe the popularity measure of a list of available items. The data type should be a list (or 1-dim array) of integers. The indices of the list is assumed to correspond to item IDs.

An example of three items: item_popularity = [5, 3, 1]

The popularity information is used for calculating Expected Popularity Complement (EPC) in the visualization.

hist_seq_len

This is an integer describing the number of most recently clicked items by the user to encode as the current state of the user.

An example of the historical sequence with length 3: hist_seq = [-1, 2, 0]. The item ID -1 indicates an empty event. In this case, the user clicked two items in the past, first item ID 2 followed by a second item ID 0.

The internal FIFO queue hist_seq will be taken as an input to both user_state_model_callback and reward_model_callback to generate observations of the user state.

slate_size

This is an integer describing the size of the slate (display list of recommended items).

It induces a combinatorial action space for the RL agent.

user_state_model_callback

This is a Python callback function taking user_id and hist_seq as inputs to generate an observation of current user state.

Note that it is generic. Either pre-defined heuristic computations or pre-trained neural network models using user/item embeddings can be wrapped as a callback function.

reward_model_callback

This is a Python callback function taking user_id, hist_seq and action as inputs to generate a reward value for each item in the slate. (i.e. action)

Note that it is generic. Either pre-defined heuristic computations or pre-trained neural network models using user/item embeddings can be wrapped as a callback function.

Examples

To illustrate the simple yet flexible design of gym-recsys, we provide a toy example to construct a simulation environment.

First, let us sample random embeddings for one user and five items:

user_features = np.random.randn(1, 10)
item_features = np.random.randn(5, 10)

Now let us define the category and popularity score for each item:

item_category = ['sci-fi', 'romance', 'sci-fi', 'action', 'sci-fi']
item_popularity = [5, 3, 1, 2, 3]

Then, we define callback functions for user state and reward values:

def user_state_model_callback(user_id, hist_seq):
    return user_features[user_id]

def reward_model_callback(user_id, hist_seq, action):
    return np.inner(user_features[user_id], item_features[action])

Finally, we are ready to create a simulation environment with OpenAI Gym API:

env_kws = dict(
    user_ids=[0],
    item_category=item_category,
    item_popularity=item_popularity,
    hist_seq_len=3,
    slate_size=2,
    user_state_model_callback=user_state_model_callback,
    reward_model_callback=reward_model_callback
)
env = gym.make('gym_recsys:RecSys-t50-v0', **env_kws)

Note that we created the environment with slate size of two items and historical interactions of the recent 3 steps. The horizon is 50 time steps.

Now let us play with this environment.

By evaluating a random agent with 100 times, we got the following performance:

Agent Episode Reward CTR
random 73.54 68.23%

Given the sampled embeddings, let's say item 1 and 3 lead to maximally possible reward values. Let us see how a greedy policy performs by constantly recommending item 1 and 3:

Agent Episode Reward CTR
greedy 180.86 97.93%

Last but not least, for the most fun part, let us generate animations of both policy for an episode via gym's Monitor wrapper, showing as GIFs in the following:

Random Agent

Greedy Agent

Citation

If you use gym-recsys in your work, please cite this repository:

@software{zuo2021recsys,
  author={Zuo, Xingdong},
  title={gym-recsys: Customizable RecSys Simulator for OpenAI Gym},
  url={https://github.com/zuoxingdong/gym-recsys},
  year={2021}
}
Owner
Xingdong Zuo
AI in well-being is my dream. Neural networks need to understand the world causally.
Xingdong Zuo
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022