FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

Related tags

Deep LearningFirmAFL
Overview

FIRM-AFL

FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it addresses compatibility issues by enabling fuzzing for POSIX-compatible firmware that can be emulated in a system emulator. Second, it addresses the performance bottleneck caused by system-mode emulation with a novel technique called "augmented process emulation". By combining system-mode emulation and user-mode emulation in a novel way, augmented process emulation provides high compatibility as system-mode emulation and high throughput as user-mode emulation.

Publication

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, Limin Sun, “FIRM-AFL: High-throughput greybox fuzzing of IoT firmware via augmented process emulation,” in USENIX Security Symposium, 2019.

Introduction

FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it addresses compatibility issues by enabling fuzzing for POSIX-compatible firmware that can be emulated in a system emulator. Second, it addresses the performance bottleneck caused by system-mode emulation with a novel technique called "augmented process emulation". By combining system-mode emulation and user-mode emulation in a novel way, augmented process emulation provides high compatibility as system-mode emulation and high throughput as user-mode emulation. The overview is show in Figure 1.

Figure 1. Overview of Augmented Process Emulation

 

We design and implement FIRM-AFL, an enhancement of AFL for fuzzing IoT firmware. We keep the workflow of AFL intact and replace the user-mode QEMU with augmented process emulation, and the rest of the components remain unchanged. The new workflow is illustrated in Figure 2.

Figure 2. Overview of FIRM-AFL

Setup

Our system has two parts: system mode and user mode. We compile them separately for now.

User mode

cd user_mode/
./configure --target-list=mipsel-linux-user,mips-linux-user,arm-linux-user --static --disable-werror
make

System mode

cd qemu_mode/DECAF_qemu_2.10/
./configure --target-list=mipsel-softmmu,mips-softmmu,arm-softmmu --disable-werror
make

Usage

  1. Download the Firmdyne repo to the root directory of FirmAFL, then setup the firmadyne according to its instructions including importing its datasheet https://cmu.app.boxcn.net/s/hnpvf1n72uccnhyfe307rc2nb9rfxmjp into database.

  2. Replace the scripts/makeImage.sh with modified one in firmadyne_modify directory.

  3. follow the guidance from firmadyne to generate the system running scripts.

Take DIR-815 router firmware as a example,

cd firmadyne
./sources/extractor/extractor.py -b dlink -sql 127.0.0.1 -np -nk "../firmware/DIR-815_FIRMWARE_1.01.ZIP" images
./scripts/getArch.sh ./images/9050.tar.gz
./scripts/makeImage.sh 9050
./scripts/inferNetwork.sh 9050
cd ..
python FirmAFL_setup.py 9050 mipsel
  1. modify the run.sh in image_9050 directory as following, in order to emulate firmware with our modified QEMU and kernel, and running on the RAM file.

For mipsel,

ARCH=mipsel
QEMU="./qemu-system-${ARCH}"
KERNEL="./vmlinux.${ARCH}_3.2.1" 
IMAGE="./image.raw"
MEM_FILE="./mem_file"
${QEMU} -m 256 -mem-prealloc -mem-path ${MEM_FILE} -M ${QEMU_MACHINE} -kernel ${KERNEL} \ 

For mipseb,

ARCH=mips
QEMU="./qemu-system-${ARCH}"
KERNEL="./vmlinux.${ARCH}_3.2.1" 
IMAGE="./image.raw"
MEM_FILE="./mem_file"
${QEMU} -m 256 -mem-prealloc -mem-path ${MEM_FILE} -M ${QEMU_MACHINE} -kernel ${KERNEL} \
  1. run the fuzzing process

after running the start.py script, FirmAFL will start the firmware emulation, and after the system initialization(120s), the fuzzing process will start. (Maybe you should use root privilege to run it.)

cd image_9050
python start.py 9050

Related Work

Our system is built on top of TriforceAFL, DECAF, AFL, and Firmadyne.

TriforceAFL: AFL/QEMU fuzzing with full-system emulation, https://github.com/nccgroup/TriforceAFL.

DECAF: "Make it work, make it right, make it fast: building a platform-neutral whole-system dynamic binary analysis platform", Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen Wang, Rundong Zhou, and Heng Yin, to appear in the International Symposium on Software Testing and Analysis (ISSTA'14), San Jose, CA, July 2014. https://github.com/sycurelab/DECAF.

AFL: american fuzzy lop (2.52b), http://lcamtuf.coredump.cx/afl/.

Firmadyne: Daming D. Chen, Maverick Woo, David Brumley, and Manuel Egele. “Towards automated dynamic analysis for Linux-based embedded firmware,” in Network and Distributed System Security Symposium (NDSS’16), 2016. https://github.com/firmadyne.

Troubleshooting

(1) error: static declaration of ‘memfd_create’ follows non-static declaration

Please see https://blog.csdn.net/newnewman80/article/details/90175033.

(2) failed to find romfile "efi-e1000.rom" when run the "run.sh"

Use the run.sh in FirmAFL_config/9050/ instead.

(3) Fork server crashed with signal 11

Run scripts in start.py sequentially. First run "run.sh", when the testing program starts, run "python test.py", and "user.sh".

(4) For the id "12978", "16116" firmware, since these firmware have more than 1 test case, so we use different image directory name to distinguish them.

Before FirmAFL_setup, 
first, change image directory name image_12978 to image_129780, 
then modify the firmadyne/scratch/12978 to firmadyne/scratch/129780
After that, run python FirmAFL_setup.py 129780 mips
(If you want to test another case for image_12978, you can use image_129781 instead image_129780)
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Facebook Research 605 Jan 02, 2023
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022