TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

Related tags

Deep Learningtorchcv
Overview

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

@misc{you2019torchcv,
    author = {Ansheng You and Xiangtai Li and Zhen Zhu and Yunhai Tong},
    title = {TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision},
    howpublished = {\url{https://github.com/donnyyou/torchcv}},
    year = {2019}
}

This repository provides source code for most deep learning based cv problems. We'll do our best to keep this repository up-to-date. If you do find a problem about this repository, please raise an issue or submit a pull request.

- Semantic Flow for Fast and Accurate Scene Parsing
- Code and models: https://github.com/lxtGH/SFSegNets

Implemented Papers

  • Image Classification

    • VGG: Very Deep Convolutional Networks for Large-Scale Image Recognition
    • ResNet: Deep Residual Learning for Image Recognition
    • DenseNet: Densely Connected Convolutional Networks
    • ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
    • ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design
    • Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
  • Semantic Segmentation

    • DeepLabV3: Rethinking Atrous Convolution for Semantic Image Segmentation
    • PSPNet: Pyramid Scene Parsing Network
    • DenseASPP: DenseASPP for Semantic Segmentation in Street Scenes
    • Asymmetric Non-local Neural Networks for Semantic Segmentation
    • Semantic Flow for Fast and Accurate Scene Parsing
  • Object Detection

    • SSD: Single Shot MultiBox Detector
    • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    • YOLOv3: An Incremental Improvement
    • FPN: Feature Pyramid Networks for Object Detection
  • Pose Estimation

    • CPM: Convolutional Pose Machines
    • OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
  • Instance Segmentation

    • Mask R-CNN
  • Generative Adversarial Networks

    • Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets
    • CycleGAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

QuickStart with TorchCV

Now only support Python3.x, pytorch 1.3.

pip3 install -r requirements.txt
cd lib/exts
sh make.sh

Performances with TorchCV

All the performances showed below fully reimplemented the papers' results.

Image Classification

  • ImageNet (Center Crop Test): 224x224
Model Train Test Top-1 Top-5 BS Iters Scripts
ResNet50 train val 77.54 93.59 512 30W ResNet50
ResNet101 train val 78.94 94.56 512 30W ResNet101
ShuffleNetV2x0.5 train val 60.90 82.54 1024 40W ShuffleNetV2x0.5
ShuffleNetV2x1.0 train val 69.71 88.91 1024 40W ShuffleNetV2x1.0
DFNetV1 train val 70.99 89.68 1024 40W DFNetV1
DFNetV2 train val 74.22 91.61 1024 40W DFNetV2

Semantic Segmentation

  • Cityscapes (Single Scale Whole Image Test): Base LR 0.01, Crop Size 769
Model Backbone Train Test mIOU BS Iters Scripts
PSPNet 3x3-Res101 train val 78.20 8 4W PSPNet
DeepLabV3 3x3-Res101 train val 79.13 8 4W DeepLabV3
  • ADE20K (Single Scale Whole Image Test): Base LR 0.02, Crop Size 520
Model Backbone Train Test mIOU PixelACC BS Iters Scripts
PSPNet 3x3-Res50 train val 41.52 80.09 16 15W PSPNet
DeepLabv3 3x3-Res50 train val 42.16 80.36 16 15W DeepLabV3
PSPNet 3x3-Res101 train val 43.60 81.30 16 15W PSPNet
DeepLabv3 3x3-Res101 train val 44.13 81.42 16 15W DeepLabV3

Object Detection

  • Pascal VOC2007/2012 (Single Scale Test): 20 Classes
Model Backbone Train Test mAP BS Epochs Scripts
SSD300 VGG16 07+12_trainval 07_test 0.786 32 235 SSD300
SSD512 VGG16 07+12_trainval 07_test 0.808 32 235 SSD512
Faster R-CNN VGG16 07_trainval 07_test 0.706 1 15 Faster R-CNN

Pose Estimation

  • OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

Instance Segmentation

  • Mask R-CNN

Generative Adversarial Networks

  • Pix2pix
  • CycleGAN

DataSets with TorchCV

TorchCV has defined the dataset format of all the tasks which you could check in the subdirs of data. Following is an example dataset directory trees for training semantic segmentation. You could preprocess the open datasets with the scripts in folder data/seg/preprocess

Dataset
    train
        image
            00001.jpg/png
            00002.jpg/png
            ...
        label
            00001.png
            00002.png
            ...
    val
        image
            00001.jpg/png
            00002.jpg/png
            ...
        label
            00001.png
            00002.png
            ...

Commands with TorchCV

Take PSPNet as an example. ("tag" could be any string, include an empty one.)

  • Training
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh train tag
  • Resume Training
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh train tag
  • Validate
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh val tag
  • Testing:
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh test tag

Demos with TorchCV

Example output of VGG19-OpenPose

Example output of VGG19-OpenPose

Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022