The toolkit to generate auto labeled datasets

Overview

Ozeu

Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box from the recorded video files.

Installation

Requirements

  • ffmpeg
  • torch
  • mmcv-full

Example installation command for cuda11.1.

pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

pip install mmcv-full==1.3.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

pip install git+https://github.com/open-mmlab/[email protected]

git clone [email protected]:xiong-jie-y/ozeu.git
cd ozeu
pip install -e .

Usage

1. Record Video

I recommend record video with the camera where you want to run detector. For webcam, you can use command like this.

ffmpeg -f v4l2 -framerate 60 -video_size 1280x720 -i /dev/video0 output_file.mkv

I recommend to place the object to record in a desk or somewhere on simple texture. That will reduce error rate. You can hold the object by your hand, because the dataset generator can recognize and remove hand like this.

2. Create dataset definition file.

You can write dataset definition file in yaml. Please define class names and ids at categories, and please associate class id and video paths in the datasets. The class ids will be the label of the files. video_path is relative to the dataset definition file. Video files that are supported by ffmpeg can be used.

categories:
  - id: 1
    name: alchol sheet
  - id: 2
    name: ipad
datasets:
  - category_id: 2
    video_path: IMG_4194_2.MOV
  - category_id: 2
    video_path: IMG_4195_2.MOV

3. Generate labaled coco dataset.

You can generate labaled coco dataset by giving the dataset definition file above. If you didn't hold object by hand while recording video, you can remove --remove-hand option.

python scripts/create_coco_dataset_from_videos.py  --dataset-definition-file ${DATASET_DEFINITION_FILE} --model-name u2net --output-path ${OUTPUT_DATASET_FOLDER} --resize-factor 2 --fps 15 --remove-hand

4. Generate background augmented datasets.

Please place background images at backgrounds_for_augmentation. The background augmentation script will use these files to replace background of datasets. Here we use VOC images as background images

wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
--2021-06-02 22:13:22--  https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_11-May-2012.tar
mkdir backgrounds_for_augmentation
mv VOCdevkit/VOC2012/JPEGImages/* backgrounds_for_augmentation/

After preparing background images, please generate background augmented dataset by running

python scripts/generate_background_augmented_dataset.py --input-dataset-path ${DATASET_FOLDER} --destination-root ${AUGMENTED_DATASET_FOLDER} --augmentation-mode different_background

5. Merge

You can merge background augmented dataset and dataset.

python scripts/merge_coco_datasets.py --input-dirs ${AUGMENTED_DATASET_FOLDER} --input-dirs ${DATASET_FOLDER} --destination-root ${MERGED_DATASET}

6. (Optional) Import dataset into cvat.

There is the annotation tool CVAT that can accept coco format dataset. So you can import dataset into your project and fix dataset.

7. TRAIN!

TRAIN!!!

Acknowledgement

  • I wish to thank my wife, Remilia Scarlet.
  • This toolkit uses U^2 net for salient object detection. Thank you for nice model!
You might also like...
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Official PyTorch implementation of
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Asterisk is a framework to generate high-quality training datasets at scale
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can detect enemy player models in real time, during gameplay. Finally, a virtual input device will adjust the player's crosshair based on live detections for greater accuracy.

根据midi文件演奏“风物之诗琴”的脚本
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Releases(0.0.1dev4)
Owner
Xiong Jie
Software Engineer, maybe? https://twitter.com/_xiongjie_
Xiong Jie
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023