This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

Related tags

Deep Learningheadnerf
Overview

HeadNeRF: A Real-time NeRF-based Parametric Head Model

This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)". Authors: Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu and Juyong Zhang*.

| Project Page | Paper |

This code has been tested on ubuntu 20.04/18.04 and contains the following parts:

  1. An interactive GUI that allows users to utilize HeadNeRF to directly edit the generated images’ rendering pose and various semantic attributes.
  2. A fitting framework for obtaining the latent code embedding in HeadNeRF of a single image.

Requirements

  • python3

  • torch>=1.8.1

  • torchvision

  • imageio

  • kornia

  • numpy

  • opencv-python==4.3.0.36

  • pyqt5

  • tqdm

  • face-alignment

  • Pillow, plotly, matplotlib, scipy, scikit-image We recommend running the following commands to create an anaconda environment called "headnerf" and automatically install the above requirements.

    conda env create -f environment.yaml
    conda activate headnerf
  • Pytorch

    Please refer to pytorch for details.

  • Pytorch3d

    It is recommended to install pytorch3d from a local clone.

    git clone https://github.com/facebookresearch/pytorch3d.git
    cd pytorch3d && pip install -e . && cd ..

Note:

  • In order to run the code smoothly, a GPU with performance higher than 1080Ti is recommended.
  • This code can also be run on Windows 10 when the mentioned above requirements are satisfied.

Getting Started

Download ConfigModels.zip, TrainedModels.zip, and LatentCodeSamples.zip, then unzip them to the root dir of this project.

Other links: Google Drive, One Drive

The folder structure is as follows:

headnerf
├── ConfigModels
│   ├── faceparsing_model.pth
│   ├── nl3dmm_dict.pkl
│   └── nl3dmm_net_dict.pth
│
├── TrainedModels
│   ├── model_Reso32.pth
│   ├── model_Reso32HR.pth
│   └── model_Reso64.pth
│
└── LatentCodeSamples
    ├── model_Reso32
    │   ├── S001_E01_I01_P02.pth
    │   └── ...
    ├── model_Reso32HR
    │   ├── S001_E01_I01_P02.pth
    │   └── ...
    └── model_Reso64
        ├── S001_E01_I01_P02.pth
        └── ...

Note:

  • faceparsing_model.pth is from face-parsing.PyTorch, and we utilize it to help generate the head mask.

  • nl3dmm_dict.pkl and nl3dmm_net_dict.pth are from 3D face from X, and they are the parameters of 3DMM.

  • model_Reso32.pth, model_Reso32HR.pth and model_Reso64.pth are our pre-trained models, and their properties are as follows:

    Pre-trained Models Feature Map's Reso Result's Reso GPU 1080Ti GPU 3090
    model_Reso32 32 x 32 256 x 256 ~14fps ~40fps
    model_Reso32HR 32 x 32 512 x 512 ~13fps ~30fps
    model_Reso64 64 x 64 512 x 512 ~ 3fps ~10fps
  • LatentCodeSamples.zip contains some latent codes that correspond to some given images.

The Interactive GUI

#GUI, for editing the generated images’ rendering pose and various semantic attributes.
python MainGUI.py --model_path "TrainedModels/model_Reso64.pth"

Args:

  • model_path is the path of the specified pre-trained model.

An interactive interface like the first figure of this document will be generated after executing the above command.

The fitting framework

This part provides a framework for fitting a single image using HeadNeRF. Besides, some test images are provided in test_data/single_images dir. These images are from FFHQ dataset and do not participate in building HeadNeRF's models.

Data Preprocess

# generating head's mask.
python DataProcess/Gen_HeadMask.py --img_dir "test_data/single_images"

# generating 68-facial-landmarks by face-alignment, which is from 
# https://github.com/1adrianb/face-alignment
python DataProcess/Gen_Landmark.py --img_dir "test_data/single_images"

# generating the 3DMM parameters
python Fitting3DMM/FittingNL3DMM.py --img_size 512 \
                                    --intermediate_size 256  \
                                    --batch_size 9 \
                                    --img_dir "test_data/single_images"

The generated results will be saved to the --img_dir.

Fitting a Single Image

# Fitting a single image using HeadNeRF
python FittingSingleImage.py --model_path "TrainedModels/model_Reso32HR.pth" \
                             --img "test_data/single_images/img_000037.png" \
                             --mask "test_data/single_images/img_000037_mask.png" \
                             --para_3dmm "test_data/single_images/img_000037_nl3dmm.pkl" \
                             --save_root "test_data/fitting_res" \
                             --target_embedding "LatentCodeSamples/*/S025_E14_I01_P02.pth"

Args:

  • para_3dmm is the 3DMM parameter of the input image and is provided in advance to initialize the latent codes of the corresponding image.
  • target_embedding is a head's latent code embedding in HeadNeRF and is an optional input. If it is provided, we will perform linear interpolation on the fitting latent code embedding and the target latent code embedding, and the corresponding head images are generated using HeadNeRF.
  • save_root is the directory where the following results are saved.

Results:

  • The image that merges the input image and the fitting result.
  • The dynamic image generated by continuously changing the rendering pose of the fitting result.
  • The dynamic image generated by performing linear interpolation on the fitting latent code embedding and the target latent code embedding.
  • The latent codes (.pth file) of the fitting result.

Note:

  • Fitting a single image based on model_Reso32.pth requires more than ~5 GB GPU memory.
  • Fitting a single image based on model_Reso32HR.pth requires more than ~6 GB GPU memory.
  • Fitting a single image based on model_Reso64.pth requires more than ~13 GB GPU memory.

Citation

If you find our work useful in your research, please consider citing our paper:

@article{hong2021headnerf,
     author     = {Yang Hong and Bo Peng and Haiyao Xiao and Ligang Liu and Juyong Zhang},
     title      = {HeadNeRF: A Real-time NeRF-based Parametric Head Model},
     booktitle  = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
     year       = {2022}
  }

If you have questions, please contact [email protected].

Acknowledgments

License

Academic or non-profit organization noncommercial research use only.

Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Matthew Colbrook 1 Apr 08, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022