This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

Related tags

Deep Learningheadnerf
Overview

HeadNeRF: A Real-time NeRF-based Parametric Head Model

This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)". Authors: Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu and Juyong Zhang*.

| Project Page | Paper |

This code has been tested on ubuntu 20.04/18.04 and contains the following parts:

  1. An interactive GUI that allows users to utilize HeadNeRF to directly edit the generated images’ rendering pose and various semantic attributes.
  2. A fitting framework for obtaining the latent code embedding in HeadNeRF of a single image.

Requirements

  • python3

  • torch>=1.8.1

  • torchvision

  • imageio

  • kornia

  • numpy

  • opencv-python==4.3.0.36

  • pyqt5

  • tqdm

  • face-alignment

  • Pillow, plotly, matplotlib, scipy, scikit-image We recommend running the following commands to create an anaconda environment called "headnerf" and automatically install the above requirements.

    conda env create -f environment.yaml
    conda activate headnerf
  • Pytorch

    Please refer to pytorch for details.

  • Pytorch3d

    It is recommended to install pytorch3d from a local clone.

    git clone https://github.com/facebookresearch/pytorch3d.git
    cd pytorch3d && pip install -e . && cd ..

Note:

  • In order to run the code smoothly, a GPU with performance higher than 1080Ti is recommended.
  • This code can also be run on Windows 10 when the mentioned above requirements are satisfied.

Getting Started

Download ConfigModels.zip, TrainedModels.zip, and LatentCodeSamples.zip, then unzip them to the root dir of this project.

Other links: Google Drive, One Drive

The folder structure is as follows:

headnerf
├── ConfigModels
│   ├── faceparsing_model.pth
│   ├── nl3dmm_dict.pkl
│   └── nl3dmm_net_dict.pth
│
├── TrainedModels
│   ├── model_Reso32.pth
│   ├── model_Reso32HR.pth
│   └── model_Reso64.pth
│
└── LatentCodeSamples
    ├── model_Reso32
    │   ├── S001_E01_I01_P02.pth
    │   └── ...
    ├── model_Reso32HR
    │   ├── S001_E01_I01_P02.pth
    │   └── ...
    └── model_Reso64
        ├── S001_E01_I01_P02.pth
        └── ...

Note:

  • faceparsing_model.pth is from face-parsing.PyTorch, and we utilize it to help generate the head mask.

  • nl3dmm_dict.pkl and nl3dmm_net_dict.pth are from 3D face from X, and they are the parameters of 3DMM.

  • model_Reso32.pth, model_Reso32HR.pth and model_Reso64.pth are our pre-trained models, and their properties are as follows:

    Pre-trained Models Feature Map's Reso Result's Reso GPU 1080Ti GPU 3090
    model_Reso32 32 x 32 256 x 256 ~14fps ~40fps
    model_Reso32HR 32 x 32 512 x 512 ~13fps ~30fps
    model_Reso64 64 x 64 512 x 512 ~ 3fps ~10fps
  • LatentCodeSamples.zip contains some latent codes that correspond to some given images.

The Interactive GUI

#GUI, for editing the generated images’ rendering pose and various semantic attributes.
python MainGUI.py --model_path "TrainedModels/model_Reso64.pth"

Args:

  • model_path is the path of the specified pre-trained model.

An interactive interface like the first figure of this document will be generated after executing the above command.

The fitting framework

This part provides a framework for fitting a single image using HeadNeRF. Besides, some test images are provided in test_data/single_images dir. These images are from FFHQ dataset and do not participate in building HeadNeRF's models.

Data Preprocess

# generating head's mask.
python DataProcess/Gen_HeadMask.py --img_dir "test_data/single_images"

# generating 68-facial-landmarks by face-alignment, which is from 
# https://github.com/1adrianb/face-alignment
python DataProcess/Gen_Landmark.py --img_dir "test_data/single_images"

# generating the 3DMM parameters
python Fitting3DMM/FittingNL3DMM.py --img_size 512 \
                                    --intermediate_size 256  \
                                    --batch_size 9 \
                                    --img_dir "test_data/single_images"

The generated results will be saved to the --img_dir.

Fitting a Single Image

# Fitting a single image using HeadNeRF
python FittingSingleImage.py --model_path "TrainedModels/model_Reso32HR.pth" \
                             --img "test_data/single_images/img_000037.png" \
                             --mask "test_data/single_images/img_000037_mask.png" \
                             --para_3dmm "test_data/single_images/img_000037_nl3dmm.pkl" \
                             --save_root "test_data/fitting_res" \
                             --target_embedding "LatentCodeSamples/*/S025_E14_I01_P02.pth"

Args:

  • para_3dmm is the 3DMM parameter of the input image and is provided in advance to initialize the latent codes of the corresponding image.
  • target_embedding is a head's latent code embedding in HeadNeRF and is an optional input. If it is provided, we will perform linear interpolation on the fitting latent code embedding and the target latent code embedding, and the corresponding head images are generated using HeadNeRF.
  • save_root is the directory where the following results are saved.

Results:

  • The image that merges the input image and the fitting result.
  • The dynamic image generated by continuously changing the rendering pose of the fitting result.
  • The dynamic image generated by performing linear interpolation on the fitting latent code embedding and the target latent code embedding.
  • The latent codes (.pth file) of the fitting result.

Note:

  • Fitting a single image based on model_Reso32.pth requires more than ~5 GB GPU memory.
  • Fitting a single image based on model_Reso32HR.pth requires more than ~6 GB GPU memory.
  • Fitting a single image based on model_Reso64.pth requires more than ~13 GB GPU memory.

Citation

If you find our work useful in your research, please consider citing our paper:

@article{hong2021headnerf,
     author     = {Yang Hong and Bo Peng and Haiyao Xiao and Ligang Liu and Juyong Zhang},
     title      = {HeadNeRF: A Real-time NeRF-based Parametric Head Model},
     booktitle  = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
     year       = {2022}
  }

If you have questions, please contact [email protected].

Acknowledgments

License

Academic or non-profit organization noncommercial research use only.

PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022