Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Overview

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou, Kai Chen

Abstract:

We study the problem of weakly semi-supervised object detection with points (WSSOD-P), where the training data is combined by a small set of fully annotated images with bounding boxes and a large set of weakly-labeled images with only a single point annotated for each instance. The core of this task is to train a point-to-box regressor on well labeled images that can be used to predict credible bounding boxes for each point annotation. Group R-CNN significantly outperforms the prior method Point DETR by 3.9 mAP with 5% well-labeled images, which is the most challenging scenario.

Install

The project has been fully tested under MMDetection V2.22.0 and MMCV V1.4.6, other versions may not be compatible. so you have to install mmcv and mmdetection firstly. You can refer to Installation of MMCV & Installation of MMDetection

Prepare the dataset

mmdetection
├── data
│   ├── coco
│   │   ├── annotations
│   │   │      ├──instances_train2017.json
│   │   │      ├──instances_val2017.json
│   │   ├── train2017
│   │   ├── val2017

You can generate point annotations with the command. It may take you several minutes for instances_train2017.json

python tools/generate_anns.py /data/coco/annotations/instances_train2017.json
python tools/generate_anns.py /data/coco/annotations/instances_val2017.json

Then you can find a point_ann directory, all annotations in the directory contain point annotations. Then you should replace the original annotations in data/coco/annotations with generated annotations.

NOTES

Here, we sample a point from the mask for all instances. But we split the images into two divisions in :class:PointCocoDataset.

  • Images with only bbox annotations(well-labeled images): Only be used in training phase. We sample a point from its bbox as point annotations each iteration.
  • Images with only point annotations(weakly-labeled sets): Only be used to generate bbox annotations from point annotations with trained point to bbox regressor.

Train and Test

8 is the number of gpus.

For slurm

Train

GPUS=8 sh tools/slurm_train.sh partition_name  job_name projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py  ./exp/group_rcnn

Evaluate the quality of generated bbox annotations on val dataset with pre-defined point annotations.

GPUS=8 sh tools/slurm_test.sh partition_name  job_name projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py ./exp/group_rcnn/latest.pth --eval bbox

Run the inference process on weakly-labeled images with point annotations to get bbox annotations.

GPUS=8 sh tools/slurm_test.sh partition_name  job_name  projects/configs/10_coco/group_rcnn_50e_10_percent_coco_detr_augmentation.py   path_to_checkpoint  --format-only --options  "jsonfile_prefix=./generated"
For Pytorch distributed

Train

sh tools/dist_train.sh projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py 8 --work-dir ./exp/group_rcnn

Evaluate the quality of generated bbox annotations on val dataset with pre-defined point annotations.

sh tools/dist_test.sh  projects/configs/10_coco/group_rcnn_24e_10_percent_coco_detr_augmentation.py  path_to_checkpoint 8 --eval bbox

Run the inference process on weakly-labeled images with point annotations to get bbox annotations.

sh tools/dist_test.sh  projects/configs/10_coco/group_rcnn_50e_10_percent_coco_detr_augmentation.py   path_to_checkpoint 8 --format-only --options  "jsonfile_prefix=./data/coco/annotations/generated"

Then you can train the student model focs.

sh tools/dist_train.sh projects/configs/10_coco/01_student_fcos.py 8 --work-dir ./exp/01_student_fcos

Results & Checkpoints

We find that the performance of teacher is unstable under 24e setting and may fluctuate by about 0.2 mAP. We report the average.

Model Backbone Lr schd Augmentation box AP Config Model log Generated Annotations
Teacher(Group R-CNN) R-50-FPN 24e DETR Aug 39.2 config ckpt log -
Teacher(Group R-CNN) R-50-FPN 50e DETR Aug 39.9 config ckpt log generated.bbox.json
Student(FCOS) R-50-FPN 12e Normal 1x Aug 33.1 config ckpt log -
Owner
Shilong Zhang
Shilong Zhang
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022