This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Overview

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories

This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

1. install python environment.

Follow the instruction of "env_install.txt" to create python virtual environment and install necessary packages. The environment is tested on python >=3.6 and pytorch >=1.8.

2. Gloss alignment algorithm.

Change your dictionary data format into the data format of "wordnet_def.txt" in "data/". Run the following commands to get gloss alignment results.

cd run_align_definitions_main/
python ../model/align_definitions_main.py

3. Download the pretrained model and data.

Visit https://drive.google.com/drive/folders/1I5-iOfWr1E32ahYDCbHKCssMdm74_JXG?usp=sharing. Download the pretrained model (SemEq-General-Large which is based on Roberta-Large) and put it under run_robertaLarge_model_span_WSD_twoStageTune/ and also run_robertaLarge_model_span_FEWS_twoStageTune/. Please make sure that the downloaded model file name is "pretrained_model_CrossEntropy.pt". The script will load the general model and fine-tune on specific WSD datasets to get the expert model.

4. Fine-tune the general model to get an expert model (SemEq-Expert-Large).

All-words WSD:

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset WSD --exp_mode twoStageTune --optimizer AdamW --learning_rate 2e-6 --bert_model roberta_large --batch_size 16

Few-shot WSD (FEWS):

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset FEWS --exp_mode twoStageTune --optimizer AdamW --learning_rate 5e-6 --bert_model roberta_large --batch_size 16

5. Evaluate results.

All-words WSD: (you can try different epochs)

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../evaluate/evaluate_WSD.py --loss CrossEntropy --epoch 1
python ../evaluate/evaluate_WSD_POS.py

Few-shot WSD (FEWS): (you can try different epochs)

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../evaluate/evaluate_FEWS.py --loss CrossEntropy --epoch 1

Note that the best results of test set on few-shot setting or zero-shot setting are selected based on dev set across epochs, respectively.

Extra. Apply the trained model to any given sentences to do WSD.

After training, you can apply the trained model (trained_model_CrossEntropy.pt) to any sentences. Examples are included in data_custom/. Examples are based on glosses in WordNet3.0.

cd run_BERT_model_span_CustomData/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset custom_data --exp_mode eval --bert_model roberta_large --batch_size 16

If you think this repo is useful, please cite our work. Thanks!

@inproceedings{yao-etal-2021-connect,
    title = "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories",
    author = "Yao, Wenlin  and
      Pan, Xiaoman  and
      Jin, Lifeng  and
      Chen, Jianshu  and
      Yu, Dian  and
      Yu, Dong",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.610",
    pages = "7741--7751",
}

Disclaimer: This repo is only for research purpose. It is not an officially supported Tencent product.

Owner
Research repositories.
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022