뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

Overview

뉴스 도메인 질의응답 시스템

본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로 fine-tuning을 수행한 모델을 기반으로 최신 뉴스 기사를 기반으로 하여 질의응답 서비스를 제공합니다.


시스템 구성 요소

총 3가지 모듈로 구성되어 있으며 웹 클라이언트에서 질의를 입력받은 후 질문과 유사한 최신 뉴스 기사를 수집하고 이를 기반으로 기계독해를 수행하여 사용자에게 적절한 정답을 제시합니다.



웹 데모 페이지

General한 한국어 데이터셋을 기반으로 학습한 한국어 기계독해 모델에 뉴스 도메인에 적합한 추가적으로 학습한 모델을 서빙하여 실시간 질의응답 서비스를 제공한다

메인 검색 페이지

image

  • K 지정: 관련도 최상위 K개의 문서를 리턴
  • 질의 입력: 질문을 입력받음
  • 검색: 검색버튼을 누르면 로딩바 재생, 검색 -> 기계독해 수행

질의 결과

image

  • 기계독해 결과 출력: 정답이 있다고 판단한 문서에 대해서 결과출력
  • 확률값을 기준으로 소팅: 확률값이 가장 높은 결과를 맨 위에 보여줌

문서 상세 보기

image

  • 문맥 보기: 정답주변의 문맥을 볼 수 있음
  • 정답 하이라이팅: 정답을 보기 쉽게 하이라이팅함
  • 원본 뉴스기사 하이퍼링크: 기사 원문을 바로 찾아갈 수 있도록 제공

Requirements

For model serving

bentoml==0.12.1
torch==1.7.1
attrdict==2.0.1
fastprogress==1.0.0
numpy==1.19.2
transformers==4.1.1
scipy==1.5.4
scikit-learn==0.24.0
seqeval==1.2.2
sentencepiece==0.1.95
six==1.15.0

For web hosting

conda==4.9.2
Flask==1.1.2
html5lib @ file:///tmp/build/80754af9/html5lib_1593446221756/work
lxml @ file:///tmp/build/80754af9/lxml_1603216285000/work
MarkupSafe==1.1.1
requests @ file:///tmp/build/80754af9/requests_1592841827918/work
urllib3 @ file:///tmp/build/80754af9/urllib3_1603305693037/work

Model Serving with BentoML

두가지 MRC모델을 손쉽게 생성가능

  • make_single_mrc_model.py : Threshold-based MRC Model
  • make_dual_mrc_model.py : Retrospective Reader(IntensiveReadingModule, SketchReadingModule)

모델 생성

python make_dual_mrc_model.py

모델 배포

bentoml serve DualMRCModel:latest

데이터셋

  • Korquad2.0, AIHUB 기계독해 데이터셋(뉴스도메인 QAset) 사용
  • Korquad2.0은 HTML태그를 제거하고 문단단위로 전처리하여 Squad2.0형식으로 변환
  • Negative example을 포함하여 변환된 Korquad2.0 데이터 셋120만개와 AIHUB 기계독해 데이터셋 28만개를 학습시 사용
  • 약 7만개의 AIHUB 기계독해 데이터셋을 평가시 사용

모델 학습

  • 코쿼드 데이터를 3번, AIHUB 데이터를 7번 반복학습
  • 파라미터는 KoELECTRA-small-v3 모델의 configuration을 그대로 사용

모델 평가

General

  • 변환한 코쿼드의 데브셋 약 13만개를 평가 데이터로 사용
  • Soft/Hard 필터링 모델에 대한 평가 수행

Soft 필터링

  • Retrospective Reader 구조를 한국어 기계독해에 적용
  • SketchReading, IntensiveReading의 정보를 합산하여 정답을 검증
  • 가중치 변수는 추론 정보의 조합 비율을 말함
  • 아래와 같이 두 가지 모듈의 정보를 적절히 반영했을때 NoAnswer 분류 성능이 더 좋음을 알 수 있었음


Hard 필터링

  • 문단별 선별적으로 독해하는 상황을 가정함
  • SketchReading에서 정답이 없다고 판별한 경우 과감히 Skip
  • 추론 효율 향상과 정답이 없는 문단을 독해하여 발생할 수 있는 Negative bias를 줄이고자 함.
  • 하지만 필터링 비율에 따라서 성능저하 발생
  • 따라서, Positive example의 추론여부가 중요한 기계독해에선 Soft필터링 방식이 적절함을 보임 <<<<<<< HEAD

=======
![image](https://user-images.githubusercontent.com/48018483/120331699-03d07280-c329-11eb-9133-7f536130b688.png)

2317d0e137e1d25027ee78b55df4e5682a391295

Domain-Specific

  • AIHUB 기계독해 데이터셋 35만개의 일부를(20%) 평가 데이터로 사용
  • 단일 모델에 대한 평가만 수행
  • NoAnswer 분류시 사용하는 임계값을 변경하며 실험
Total
(EM)
Total
(F1)
정답이 있는 경우
(F1)
정답이 없는 경우
(acc)
KoreanNewsQAModel X X 81.84 X
KoreanNewsQAModel(th=10) 67.87 82.56 81.64 84.85
KoreanNewsQAModel(th=0) 70.58 84.92 80.53 95.89

전체적인 성능치를 고려하여 임계값을 0으로 설정하여 모델을 서빙하기로 결정

Citation

@misc{park2020koelectra,
  author = {Park, Jangwon},
  title = {KoELECTRA: Pretrained ELECTRA Model for Korean},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/monologg/KoELECTRA}}
}

Reference

Owner
TaegyeongEo
TaegyeongEo
Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

NLP Boot Camp (Jan) Synopsis Full Name: Prameya Mohanty Name of your School: Delhi Public School, Rourkela Class: VIII Title of the Project: iTransect

TheCodingHub 1 Feb 01, 2022
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022