A music comments dataset, containing 39,051 comments for 27,384 songs.

Overview

Music Comments Dataset

License: AGPL v3

A music comments dataset, containing 39,051 comments for 27,384 songs.

For academic research use only.

Introduction

This dataset is part of a recent multimodal deep learning project on music and natural language that I have been working on. The complete dataset contains 30s of audio, metadata, lyrics, and comments for each piece of data. This dataset contains only the lyrics and comments sections.

In the current stage, it only contains 39,051 comments for 27,384 songs (for dataset_summarization_positive.pkl) and can be larger if necessary (for other files).

Because the audio data is much less than the review data, I kept only this part as the dataset in order to ensure that music and reviews appear in pairs.

Here is a data sample:

Lyrics: Come up to meet you, tell you I'm sorry; You don't know how lovely you are; I had to find you, tell you I need you; ; Tell you I set you apart; Tell me your secrets and ask me your questions; Oh, let's go back to the start; ; Running in circles, coming up tails; Heads on a science apart; Nobody said it was easy; ; It's such a shame for us to part; Nobody said it was easy; No one ever said it would be this hard; ; Oh, take me back to the start; I was just guessing at numbers and figures; Pulling the puzzles apart; Questions of science, science and progress; ; Do not speak as loud as my heart; ; But tell me you love me, come back and haunt me; Oh and I rush to the start; Running in circles, chasing our tails; ; Coming back as we are; Nobody said it was easy; Oh, it's such a shame for us to part; Nobody said it was easy; No one ever said it would be so hard; I'm going back to the start; Oh ooh, ooh ooh ooh ooh; Ah ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh

Ground Truth: The song is like poetry with many meanings to be sifted out applicable to many people in many different relationship situations. I find the lyrics touch me as if specifically written regarding my own situations at times. The following meaning I describe in no way reflects any situation I have ever had to face.

Data Source and Data Preprocessing

The audio and metadata files are from the Music4All Dataset, which I cannot make available directly due to agreeement restrictions, so anyone who would like to request that dataset can contact the authors directly.

The review data is mainly from songmeanings.com. I have done some data pre-processing to make the comment data more concise.

The first is the summarization method. I use the generative summarisation method to remove useless information from the comments (See Figure 1).

The second is the positive method. Each original comment carries a rating, which relates to the degree to which the comment itself is agreed by the community. The summarization token means that I only pick comments which have ratings > 0. The not_negative tokens means that the comments have ratings >= 0.

Folder Structure

.
├── README.md
├── codes
│   └── data.py
└── dataset
    ├── dataset_summarization_positive.pkl
    ├── dataset_summarization_not_negative.pkl
    ├── dataset_summarization.pkl
    ├── dataset_positive.pkl
    ├── dataset_not_negative.pkl
    └── dataset.pkl

In the data.py file, I have provided a PyTorch Dataset class to use.

Data Format

the .pkl file is an object List. It can be loaded and read using LyricsCommentsDatasetPsuedo class in data.py.

Each data contains two attributes: lyrics and comment. A lyric may correspond to more than one comment, so I broadcast the lyrics to ensure that each comment has a corresponding lyric.

Citation

@article{zhanggenerating,
  title={Generating Comments from Music and Lyrics},
  author={Zhang, Yixiao and Dixon, Simon},
  year={2021}
}
Owner
Zhang Yixiao
AI and Music PhD Student @c4dm
Zhang Yixiao
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022