Python port of Google's libphonenumber

Overview

phonenumbers Python Library

Coverage Status

This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase, with no 2to3 conversion needed).

Original Java code is Copyright (C) 2009-2015 The Libphonenumber Authors.

Release HISTORY, derived from upstream release notes.

Installation

Install using pip with:

pip install phonenumbers

Example Usage

The main object that the library deals with is a PhoneNumber object. You can create this from a string representing a phone number using the parse function, but you also need to specify the country that the phone number is being dialled from (unless the number is in E.164 format, which is globally unique).

>>> import phonenumbers
>>> x = phonenumbers.parse("+442083661177", None)
>>> print(x)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> type(x)
<class 'phonenumbers.phonenumber.PhoneNumber'>
>>> y = phonenumbers.parse("020 8366 1177", "GB")
>>> print(y)
Country Code: 44 National Number: 2083661177 Leading Zero: False
>>> x == y
True
>>> z = phonenumbers.parse("00 1 650 253 2222", "GB")  # as dialled from GB, not a GB number
>>> print(z)
Country Code: 1 National Number: 6502532222 Leading Zero(s): False

The PhoneNumber object that parse produces typically still needs to be validated, to check whether it's a possible number (e.g. it has the right number of digits) or a valid number (e.g. it's in an assigned exchange).

>>> z = phonenumbers.parse("+120012301", None)
>>> print(z)
Country Code: 1 National Number: 20012301 Leading Zero: False
>>> phonenumbers.is_possible_number(z)  # too few digits for USA
False
>>> phonenumbers.is_valid_number(z)
False
>>> z = phonenumbers.parse("+12001230101", None)
>>> print(z)
Country Code: 1 National Number: 2001230101 Leading Zero: False
>>> phonenumbers.is_possible_number(z)
True
>>> phonenumbers.is_valid_number(z)  # NPA 200 not used
False

The parse function will also fail completely (with a NumberParseException) on inputs that cannot be uniquely parsed, or that can't possibly be phone numbers.

>>> z = phonenumbers.parse("02081234567", None)  # no region, no + => unparseable
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2350, in parse
    "Missing or invalid default region.")
phonenumbers.phonenumberutil.NumberParseException: (0) Missing or invalid default region.
>>> z = phonenumbers.parse("gibberish", None)
Traceback (most recent call last):
  File "phonenumbers/phonenumberutil.py", line 2344, in parse
    "The string supplied did not seem to be a phone number.")
phonenumbers.phonenumberutil.NumberParseException: (1) The string supplied did not seem to be a phone number.

Once you've got a phone number, a common task is to format it in a standardized format. There are a few formats available (under PhoneNumberFormat), and the format_number function does the formatting.

>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.NATIONAL)
'020 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.INTERNATIONAL)
'+44 20 8366 1177'
>>> phonenumbers.format_number(x, phonenumbers.PhoneNumberFormat.E164)
'+442083661177'

If your application has a UI that allows the user to type in a phone number, it's nice to get the formatting applied as the user types. The AsYouTypeFormatter object allows this.

>>> formatter = phonenumbers.AsYouTypeFormatter("US")
>>> formatter.input_digit("6")
'6'
>>> formatter.input_digit("5")
'65'
>>> formatter.input_digit("0")
'650'
>>> formatter.input_digit("2")
'650 2'
>>> formatter.input_digit("5")
'650 25'
>>> formatter.input_digit("3")
'650 253'
>>> formatter.input_digit("2")
'650-2532'
>>> formatter.input_digit("2")
'(650) 253-22'
>>> formatter.input_digit("2")
'(650) 253-222'
>>> formatter.input_digit("2")
'(650) 253-2222'

Sometimes, you've got a larger block of text that may or may not have some phone numbers inside it. For this, the PhoneNumberMatcher object provides the relevant functionality; you can iterate over it to retrieve a sequence of PhoneNumberMatch objects. Each of these match objects holds a PhoneNumber object together with information about where the match occurred in the original string.

>>> text = "Call me at 510-748-8230 if it's before 9:30, or on 703-4800500 after 10am."
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(match)
...
PhoneNumberMatch [11,23) 510-748-8230
PhoneNumberMatch [51,62) 703-4800500
>>> for match in phonenumbers.PhoneNumberMatcher(text, "US"):
...     print(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.E164))
...
+15107488230
+17034800500

You might want to get some information about the location that corresponds to a phone number. The geocoder.area_description_for_number does this, when possible.

>>> from phonenumbers import geocoder
>>> ch_number = phonenumbers.parse("0431234567", "CH")
>>> geocoder.description_for_number(ch_number, "de")
'Zürich'
>>> geocoder.description_for_number(ch_number, "en")
'Zurich'
>>> geocoder.description_for_number(ch_number, "fr")
'Zurich'
>>> geocoder.description_for_number(ch_number, "it")
'Zurigo'

For mobile numbers in some countries, you can also find out information about which carrier originally owned a phone number.

>>> from phonenumbers import carrier
>>> ro_number = phonenumbers.parse("+40721234567", "RO")
>>> carrier.name_for_number(ro_number, "en")
'Vodafone'

You might also be able to retrieve a list of time zone names that the number potentially belongs to.

>>> from phonenumbers import timezone
>>> gb_number = phonenumbers.parse("+447986123456", "GB")
>>> timezone.time_zones_for_number(gb_number)
('Atlantic/Reykjavik', 'Europe/London')

For more information about the other functionality available from the library, look in the unit tests or in the original libphonenumber project.

Memory Usage

The library includes a lot of metadata, potentially giving a significant memory overhead. There are two mechanisms for dealing with this.

  • The normal metadata for the core functionality of the library is loaded on-demand, on a region-by-region basis (i.e. the metadata for a region is only loaded on the first time it is needed).
  • Metadata for extended functionality is held in separate packages, which therefore need to be explicitly loaded separately. This affects:
    • The geocoding metadata, which is held in phonenumbers.geocoder and used by the geocoding functions (geocoder.description_for_number, geocoder.description_for_valid_number or geocoder.country_name_for_number).
    • The carrier metadata, which is held in phonenumbers.carrier and used by the mapping functions (carrier.name_for_number or carrier.name_for_valid_number).
    • The timezone metadata, which is held in phonenumbers.timezone and used by the timezone functions (time_zones_for_number or time_zones_for_geographical_number).

The phonenumberslite version of the library does not include the geocoder, carrier and timezone packages, which can be useful if you have problems installing the main phonenumbers library due to space/memory limitations.

If you need to ensure that the metadata memory use is accounted for at start of day (i.e. that a subsequent on-demand load of metadata will not cause a pause or memory exhaustion):

  • Force-load the normal metadata by calling phonenumbers.PhoneMetadata.load_all().
  • Force-load the extended metadata by importing the appropriate packages (phonenumbers.geocoder, phonenumbers.carrier, phonenumbers.timezone).

The phonenumberslite version of the package does not include the geocoding, carrier and timezone metadata, which can be useful if you have problems installing the main phonenumbers package due to space/memory limitations.

Project Layout

  • The python/ directory holds the Python code.
  • The resources/ directory is a copy of the resources/ directory from libphonenumber. This is not needed to run the Python code, but is needed when upstream changes to the master metadata need to be incorporated.
  • The tools/ directory holds the tools that are used to process upstream changes to the master metadata.
Owner
David Drysdale
David Drysdale
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022