[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

Overview

CAT

arXiv

Pytorch implementation of our method for compressing image-to-image models.
Teachers Do More Than Teach: Compressing Image-to-Image Models
Qing Jin1, Jian Ren2, Oliver J. Woodford, Jiazhuo Wang2, Geng Yuan1, Yanzhi Wang1, Sergey Tulyakov2
1Northeastern University, 2Snap Inc.
In CVPR 2021.

Overview

Compression And Teaching (CAT) framework for compressing image-to-image models: ① Given a pre-trained teacher generator Gt, we determine the architecture of a compressed student generator Gs by eliminating those channels with smallest magnitudes of batch norm scaling factors. ② We then distill knowledge from the pretrained teacher Gt on the student Gs via a novel distillation technique, which maximize the similarity between features of both generators, defined in terms of kernel alignment (KA).

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:

    git clone [email protected]:snap-research/CAT.git
    cd CAT
  • Install PyTorch 1.7 and other dependencies (e.g., torchvision).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, please create a new Conda environment using conda env create -f environment.yml.

Data Preparation

CycleGAN

Setup

  • Download the CycleGAN dataset (e.g., horse2zebra).

    bash datasets/download_cyclegan_dataset.sh horse2zebra
  • Get the statistical information for the ground-truth images for your dataset to compute FID. We provide pre-prepared real statistic information for several datasets on Google Drive Folder.

Pix2pix

Setup

  • Download the pix2pix dataset (e.g., cityscapes).

    bash datasets/download_pix2pix_dataset.sh cityscapes

Cityscapes Dataset

For the Cityscapes dataset, we cannot provide it due to license issue. Please download the dataset from https://cityscapes-dataset.com and use the script prepare_cityscapes_dataset.py to preprocess it. You need to download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip and unzip them in the same folder. For example, you may put gtFine and leftImg8bit in database/cityscapes-origin. You need to prepare the dataset with the following commands:

python datasets/get_trainIds.py database/cityscapes-origin/gtFine/
python datasets/prepare_cityscapes_dataset.py \
--gtFine_dir database/cityscapes-origin/gtFine \
--leftImg8bit_dir database/cityscapes-origin/leftImg8bit \
--output_dir database/cityscapes \
--table_path datasets/table.txt

You will get a preprocessed dataset in database/cityscapes and a mapping table (used to compute mIoU) in dataset/table.txt.

  • Get the statistical information for the ground-truth images for your dataset to compute FID. We provide pre-prepared real statistics for several datasets. For example,

    bash datasets/download_real_stat.sh cityscapes A

Evaluation Preparation

mIoU Computation

To support mIoU computation, you need to download a pre-trained DRN model drn-d-105_ms_cityscapes.pth from http://go.yf.io/drn-cityscapes-models. By default, we put the drn model in the root directory of our repo. Then you can test our compressed models on cityscapes after you have downloaded our compressed models.

FID/KID Computation

To compute the FID/KID score, you need to get some statistical information from the groud-truth images of your dataset. We provide a script get_real_stat.py to extract statistical information. For example, for the map2arial dataset, you could run the following command:

python get_real_stat.py \
--dataroot database/map2arial \
--output_path real_stat/maps_B.npz \
--direction AtoB

For paired image-to-image translation (pix2pix and GauGAN), we calculate the FID between generated test images to real test images. For unpaired image-to-image translation (CycleGAN), we calculate the FID between generated test images to real training+test images. This allows us to use more images for a stable FID evaluation, as done in previous unconditional GANs research. The difference of the two protocols is small. The FID of our compressed CycleGAN model increases by 4 when using real test images instead of real training+test images.

KID is not supported for the cityscapes dataset.

Model Training

Teacher Training

The first step of our framework is to train a teacher model. For this purpose, please run the script train_inception_teacher.sh under the correponding folder named as the dataset, for example, run

bash scripts/cycle_gan/horse2zebra/train_inception_teacher.sh

Student Training

With the pretrained teacher model, we can determine the architecture of student model under prescribed computational budget. For this purpose, please run the script train_inception_student_XXX.sh under the correponding folder named as the dataset, where XXX stands for the computational budget (in terms of FLOPs for this case) and can be different for different datasets and models. For example, for CycleGAN with Horse2Zebra dataset, our computational budget is 2.6B FLOPs, so we run

bash scripts/cycle_gan/horse2zebra/train_inception_student_2p6B.sh

Pre-trained Models

For convenience, we also provide pretrained teacher and student models on Google Drive Folder.

Model Evaluation

With pretrained teacher and student models, we can evaluate them on the dataset. For this purpose, please run the script evaluate_inception_student_XXX.sh under the corresponding folder named as the dataset, where XXX is the computational budget (in terms of FLOPs). For example, for CycleGAN with Horse2Zebra dataset where the computational budget is 2.6B FLOPs, please run

bash scripts/cycle_gan/horse2zebra/evaluate_inception_student_2p6B.sh

Model Export

The final step is to export the trained compressed model as onnx file to run on mobile devices. For this purpose, please run the script onnx_export_inception_student_XXX.sh under the corresponding folder named as the dataset, where XXX is the computational budget (in terms of FLOPs). For example, for CycleGAN with Horse2Zebra dataset where the computational budget is 2.6B FLOPs, please run

bash scripts/cycle_gan/horse2zebra/onnx_export_inception_student_2p6B.sh

This will create one .onnx file in addition to log files.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{jin2021teachers,
  title={Teachers Do More Than Teach: Compressing Image-to-Image Models},
  author={Jin, Qing and Ren, Jian and Woodford, Oliver J and Wang, Jiazhuo and Yuan, Geng and Wang, Yanzhi and Tulyakov, Sergey},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledgements

Our code is developed based on AtomNAS and gan-compression.

We also thank pytorch-fid for FID computation and drn for mIoU computation.

Owner
Snap Research
Snap Research
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023