RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

Overview

RMNet: Equivalently Removing Residual Connection from Networks

This repository is the official implementation of "RMNet: Equivalently Removing Residual Connection from Networks".

Requirements

To install requirements:

pip install torch
pip install torchvision

Training

To train the models in the paper, run this command:

python train.py -a rmrep_69 --dist-url 'tcp://127.0.0.1:23333' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 --workers 32 [imagenet-folder with train and val folders]

Our Pre-trained Models

You can download pretrained models here:

Evaluation

To evaluate our pre-trained models trained on ImageNet, run:

python train.py -a rmrep_69 -e checkpoint/rmrep_69.pth.tar [imagenet-folder with train and val folders]

Results

Our model achieves the following performance on :

Help RepVGG achieve better performance even when the depth is large

Arch Top-1 Accuracy(%) Top-5 Accuracy(%) Train FLOPs(G) Test FLOPs(M)
RepVGG-21 72.508 90.840 2.4 2.1
RepVGG-21(RM 0.25) 72.590 90.924 2.1 2.1
RepVGG-37 74.408 91.900 4.4 4.0
RepVGG-37(RM 0.25) 74.478 91.892 3.9 4.0
RepVGG-69 74.526 92.182 8.6 7.7
RepVGG-69(RM 0.5) 75.088 92.144 6.5 7.7
RepVGG-133 70.912 89.788 16.8 15.1
RepVGG-133(RM 0.75) 74.560 92.000 10.6 15.1

Image Classification on ImageNet

Model name Top 1 Accuracy(%) Top 5 Accuracy(%)
RMNeXt 41x5_16 78.498 94.086
RMNeXt 50x5_32 79.076 94.444
RMNeXt 50x6_32 79.57 94.644
RMNeXt 101x6_16 80.07 94.918
RMNeXt 152x6_32 80.356 80.356

Citation

If you find this code useful, please cite the following paper:

@misc{meng2021rmnet,
      title={RMNet: Equivalently Removing Residual Connection from Networks}, 
      author={Fanxu Meng and Hao Cheng and Jiaxin Zhuang and Ke Li and Xing Sun},
      year={2021},
      eprint={2111.00687},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contributing

Our code is based on RepVGG

PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023